In Silico Study and Optimization of Molecular Nanomotors for Membrane Photopharmacology
膜光药理学分子纳米马达的计算机研究和优化
基本信息
- 批准号:10629113
- 负责人:
- 金额:$ 14.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse effectsAffinityAntibiotic TherapyBacterial Antibiotic ResistanceBindingBiologicalCell Death InductionCell membraneCellsClinical ResearchCollaborationsCommunicable DiseasesComputer ModelsComputer SimulationComputer softwareComputing MethodologiesDevelopmentDrug ControlsDrug Delivery SystemsDrug resistanceDrug usageEmploymentGasesGenerationsGoalsIsomerismLightLocationMachine LearningMalignant neoplasm of prostateMeasuresMechanicsMediatingMembraneMembrane LipidsMethodsModalityModernizationModificationMolecularMolecular StructureMotorNatureNuclearOperative Surgical ProceduresPatientsPenetrationPerforationPharmaceutical PreparationsPharmacotherapyPhasePhospholipidsPhotonsPhototoxicityProcessPropertyQuantum MechanicsRadiationRadiation induced damageRotationStructureSystemTechniquesTechnologyTestingTherapeuticTimeTissuesToxic effectTrainingUltraviolet RaysWorkabsorptioncancer cellcancer therapychemotherapyclinical applicationdesigndrug developmentexperimental studyfunctional grouphigh throughput screeningimprovedin silicoinsightirradiationlight intensitylipid nanoparticlemachine learning algorithmmechanical propertiesmolecular dynamicsmolecular mechanicsnanonext generationnovel strategiespi bondquantumside effectsimulationtwo-photonultraviolet
项目摘要
Project Summary/Abstract
There is a dire need in developing new molecular paradigms for pharmacotherapy to address problems of poor
drug selectivity, causing side effects, drug resistance, and environmental toxicity. Currently, over 85 % of the drugs
in clinical research are discarded due to poor selectivity. Increasing drug selectivity is a major concern of modern
drug development. Photopharmacology increases drug selectivity by using controlled light-activation of drugs at
a given time and location in the body. Recently, a light-driven molecular nanomotor has been developed (García-
López et al., Nature, 548, 7669, 567, 2017), that is capable of disrupting biological membranes, inducing cell
death in eucaryotic cells. This mechanism has potential applications in drug delivery through lipid nanoparticles,
cancer treatment, and combating infectious diseases. Besides chemotherapy, radiation, and surgery, mechanical
action of nanomotors on a molecular level could become a fourth modality in the treatment of patients. However,
being still at a developmental stage, a detailed understanding of the molecular mechanism of this process is
required to advance this technology towards clinical applications. We will use computer modeling to study the
molecular mechanism of the membrane disruption by the recently developed nanomotor. Based on the gained
insight, we will design and optimize new nanomotors by introducing functional groups to improve molecular prop-
erties. The final goal is to develop a next generation of nanomotors that can be applied in clinical studies. To
reduce phototoxicity, it is necessary that the motor operates with a high quantum yield, converting a high percent-
age of the absorbed photons into mechanical work to displace membrane lipids. Furthermore, tissue applications
require the irradiation wavelength to occur in the 600–1000 nm region, which penetrates deeper than the initially
used ultraviolet light, that also has higher phototoxicity. We will employ computational methods based on quantum
mechanics, molecular mechanics, and machine learning. Core of our study will be the real time simulation of the
photoinduced dynamics of the nanomotor in the membrane, yielding atomistic information about the membrane
disruption process. To this end we will use machine learning driven molecular dynamics. The machine learning
algorithm will be trained using quantum mechanical simulations. Based on the gained insights, several molecular
properties will be enhanced by modifications of the functional groups: a) binding affinity to the membrane; b)
light absorption in the near infrared or visible region; c) absorption cross section and quantum yield. To obtain
candidate molecules we will employ in silico high-throughput screening based on exhaustive molecule generation
and machine learning of quantum mechanical properties. Candidates with improved properties will be synthe-
sized by the García-López lab and studied experimentally to gauge the validity of the predictions. The results
of this combined computational/experimental study will give a detailed atomistic picture of the dynamics of the
nanomotors membranes. The proposed molecular modifications will lead to a next generation of nanomotors,
opening this technology for clinical studies, leading to highly selective light-activated drugs.
项目概要/摘要
迫切需要开发新的药物治疗分子范式来解决贫困问题
药物选择性,引起副作用、耐药性和环境毒性。目前,85%以上的药物
在临床研究中由于选择性差而被丢弃。提高药物选择性是现代药物研究的一个主要问题
药物开发。光药理学通过使用受控光激活药物来提高药物选择性
体内的特定时间和位置。最近,开发了一种光驱动的分子纳米马达(García-
López et al., Nature, 548, 7669, 567, 2017),能够破坏生物膜,诱导细胞
真核细胞死亡。该机制在通过脂质纳米颗粒进行药物输送方面具有潜在的应用,
癌症治疗和对抗传染病。除了化疗、放疗和手术外,机械疗法
纳米马达在分子水平上的作用可能成为治疗患者的第四种方式。然而,
由于仍处于发展阶段,因此需要详细了解该过程的分子机制
需要将这项技术推向临床应用。我们将使用计算机建模来研究
最近开发的纳米电机破坏膜的分子机制。根据所得
洞察力,我们将通过引入官能团来设计和优化新的纳米电机,以改善分子性能
职权。最终目标是开发可应用于临床研究的下一代纳米电机。到
降低光毒性,电机必须以高量子产率运行,从而实现高百分比-
吸收的光子转化为机械功以取代膜脂的年龄。此外,组织应用
要求照射波长发生在 600–1000 nm 区域,其穿透深度比最初
使用紫外线,也具有较高的光毒性。我们将采用基于量子的计算方法
力学、分子力学和机器学习。我们研究的核心将是实时模拟
膜中纳米电机的光诱导动力学,产生有关膜的原子信息
扰乱过程。为此,我们将使用机器学习驱动的分子动力学。机器学习
算法将使用量子力学模拟进行训练。根据所获得的见解,一些分子
通过官能团的修饰可以增强性能: a) 与膜的结合亲和力; b)
近红外或可见光区域的光吸收; c) 吸收截面和量子产率。获得
我们将在基于详尽分子生成的计算机高通量筛选中采用候选分子
和量子力学特性的机器学习。具有改进性能的候选者将被合成
由加西亚-洛佩斯实验室确定尺寸,并通过实验研究来衡量预测的有效性。结果
这项综合计算/实验研究将给出动力学的详细原子图
纳米马达膜。所提出的分子修饰将导致下一代纳米电机,
将该技术开放用于临床研究,从而产生高选择性的光激活药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrico Tapavicza其他文献
Enrico Tapavicza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Studentship














{{item.name}}会员




