In Silico Study and Optimization of Molecular Nanomotors for Membrane Photopharmacology

膜光药理学分子纳米马达的计算机研究和优化

基本信息

项目摘要

Project Summary/Abstract There is a dire need in developing new molecular paradigms for pharmacotherapy to address problems of poor drug selectivity, causing side effects, drug resistance, and environmental toxicity. Currently, over 85 % of the drugs in clinical research are discarded due to poor selectivity. Increasing drug selectivity is a major concern of modern drug development. Photopharmacology increases drug selectivity by using controlled light-activation of drugs at a given time and location in the body. Recently, a light-driven molecular nanomotor has been developed (García- López et al., Nature, 548, 7669, 567, 2017), that is capable of disrupting biological membranes, inducing cell death in eucaryotic cells. This mechanism has potential applications in drug delivery through lipid nanoparticles, cancer treatment, and combating infectious diseases. Besides chemotherapy, radiation, and surgery, mechanical action of nanomotors on a molecular level could become a fourth modality in the treatment of patients. However, being still at a developmental stage, a detailed understanding of the molecular mechanism of this process is required to advance this technology towards clinical applications. We will use computer modeling to study the molecular mechanism of the membrane disruption by the recently developed nanomotor. Based on the gained insight, we will design and optimize new nanomotors by introducing functional groups to improve molecular prop- erties. The final goal is to develop a next generation of nanomotors that can be applied in clinical studies. To reduce phototoxicity, it is necessary that the motor operates with a high quantum yield, converting a high percent- age of the absorbed photons into mechanical work to displace membrane lipids. Furthermore, tissue applications require the irradiation wavelength to occur in the 600–1000 nm region, which penetrates deeper than the initially used ultraviolet light, that also has higher phototoxicity. We will employ computational methods based on quantum mechanics, molecular mechanics, and machine learning. Core of our study will be the real time simulation of the photoinduced dynamics of the nanomotor in the membrane, yielding atomistic information about the membrane disruption process. To this end we will use machine learning driven molecular dynamics. The machine learning algorithm will be trained using quantum mechanical simulations. Based on the gained insights, several molecular properties will be enhanced by modifications of the functional groups: a) binding affinity to the membrane; b) light absorption in the near infrared or visible region; c) absorption cross section and quantum yield. To obtain candidate molecules we will employ in silico high-throughput screening based on exhaustive molecule generation and machine learning of quantum mechanical properties. Candidates with improved properties will be synthe- sized by the García-López lab and studied experimentally to gauge the validity of the predictions. The results of this combined computational/experimental study will give a detailed atomistic picture of the dynamics of the nanomotors membranes. The proposed molecular modifications will lead to a next generation of nanomotors, opening this technology for clinical studies, leading to highly selective light-activated drugs.
项目摘要/摘要 开发新的分子范式来解决药物疗法以解决贫困问题有迫切需要 药物选择性,引起副作用,耐药性和环境毒性。目前,超过85%的药物 在临床研究中,由于选择性差而被丢弃。增加药物选择性是现代的主要关注点 药物开发。光电学通过使用受控的药物在 给定的时间和位置。最近,已经开发了一个轻驱动的分子纳米运动(García- López等人,自然,548,7669,567,2017),能够破坏生物膜,诱导细胞 桉树细胞死亡。该机制通过脂质纳米颗粒在药物递送中有潜在的应用, 癌症治疗和打击传染病。除了化学疗法,放射线和手术外,机械 纳米运动在分子水平上的作用可能会成为患者治疗的第四个模态。然而, 仍处于发展阶段,对这一过程的分子机制的详细理解是 将这项技术推向临床应用所需。我们将使用计算机建模来研究 最近开发的纳米运动膜破坏膜的分子机制。基于获得的 洞察力,我们将通过引入官能团来设计和优化新的纳米运动,以改善分子支持 Erties。最后的目标是开发可用于临床研究中的下一代纳米运动。到 降低光毒性,有必要以高量子产率运行,将高百分比转换 吸收照片的年龄将膜脂质置换为机械工作。此外,组织应用 需要在600–1000 nm区域中发生辐照波长,该区域渗透比最初更深 使用的紫外线也具有较高的光毒性。我们将采用基于量子的计算方法 力学,分子力学和机器学习。我们研究的核心将是对 膜中纳米运动的照片诱导的动力学,得出有关膜的原子信息 破坏过程。为此,我们将使用机器学习驱动器分子动力学。机器学习 算法将使用量子机械模拟训练。基于获得的见解,几个分子 函数组的修改将增强属性:a)与膜的结合; b) 近红外或可见区域的遗憾; c)遗憾横截面和量子收率。获得 我们将基于详尽的分子生成的硅高通量筛选中使用的候选分子 和量子机械性能的机器学习。具有改善特性的候选者将是合成的 由García-López实验室进行的,并通过实验研究以评估预测的有效性。结果 这项组合的计算/实验研究将提供详细的原子图。 纳米运动膜。提出的分子修饰将导致下​​一代纳米运动, 为临床研究开放这项技术,导致高度选择性的光激活药物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enrico Tapavicza其他文献

Enrico Tapavicza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
  • 批准号:
    51009131
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
  • 批准号:
    50178004
  • 批准年份:
    2001
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Supplement for Role of Environmental Weathering and Gastrointestinal Digestion on the Bioavailability and Toxicity of Microplastic and Cadmium Mixtures
补充环境风化和胃肠消化对微塑料和镉混合物的生物利用度和毒性的作用
  • 批准号:
    10854398
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
  • 批准号:
    10726508
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
  • 批准号:
    10743144
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
  • 批准号:
    10566062
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
PAIRS: Validating telomerase reverse transcriptase (TERT) as an intrinsic vulnerability toward sensitizing cancer to radiation
配对:验证端粒酶逆转录酶 (TERT) 作为癌症对辐射敏感的内在脆弱性
  • 批准号:
    10718390
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了