Spatial coordination of cytosolic and mitochondrial translation
细胞质和线粒体翻译的空间协调
基本信息
- 批准号:10739786
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAlzheimer&aposs DiseaseBinding ProteinsBiochemistryBiogenesisBiologyBrainCardiac MyocytesCellsCellular biologyCommunicationCytosolDiseaseDoctor of PhilosophyEndoplasmic ReticulumFaceFluorescent in Situ HybridizationFoundationsFutureGene ExpressionGeneticGenomeHealthHeart failureHumanImageImmobilizationIn SituIn Situ HybridizationKnowledgeKnowledge acquisitionLaboratoriesMembraneMentorsMessenger RNAMitochondriaMitochondrial DiseasesMitochondrial MatrixMitochondrial Proton-Translocating ATPasesMolecularMutationNatureNeuronsNuclearOrganellesOxidative PhosphorylationPhaseProductionProteinsRNA-Binding ProteinsRegulationResearchSchizophreniaSeriesSideSiteSynapsesTechnologyTestingTrainingTranslatingTranslation InitiationTranslational RepressionTranslationsWeightYeastsexperimental studyinsightlive cell imagingmRNA Translationmitochondrial genomemitochondrial messenger RNAmolecular imagingnovelpost-doctoral trainingprogramssingle moleculeskillsstoichiometry
项目摘要
Project Summary:
Mitochondria are critical for cells with high energy demand. Mitochondrial ATP synthase completes the final
step of ATP production. Mutations in ATP synthase cause a range of diseases, including Schizophrenia, and
heart failure. Thus, the basic biology of ATP synthase is important for health and disease.
The subunits of the ATP synthase are encoded by the nuclear and mitochondrial genome. A unique challenge
of assembling the ATP synthase is to coordinate the gene expressions from dual genetic origins. Recent studies
showed that cytosolic and mitochondrial translation are temporally synchronized to maintain the stoichiometry of
the ATP synthase subunits (Couvillion, M.T., et al. Nature, 2016; Soto, I, et al. Genome Biology, 2022). However,
the underlying mechanism of the cross-compartment communication remains largely unknown. I aim to fill in the
knowledge gap in this proposed study. Using single-molecule fluorescent in situ hybridization (smFISH) in yeast,
I imaged the mRNAs of a nuclear-encoded subunit, ATP2, and a mitochondrial-encoded subunit, ATP6/8. I
discovered that the ATP2 and ATP6/8 mRNA co-localized on the mitochondrial network. Based on this
observation, I hypothesize that the cytosolic and mitochondrial translation co-localize on opposite sides of the
mitochondrial double membrane, thereby promoting the assembly of the ATP synthase. In Aim 1, I propose to
determine how the ATP2 mRNAs co-translationally associate with mitochondria. In Aim 2, I will define the spatial
coordination between the cytosolic and mitochondrial mRNAs in yeast and cultured neurons. In Aim 3, I shall
identify the regulating proteins and dissect the underlying mechanism of the cross-compartment co-localization.
This study will uncover a novel mechanism by which cells spatially coordinate the nuclear and mitochondrial
gene expressions during mitochondrial biogenesis.
My PhD training with Dr. Peter Walter prepared me with the skills in organelle biology, yeast cell biology, and
biochemistry. My postdoctoral training with Dr. Robert Singer equipped me with the expertise in single-molecule
imaging. These complementary skills give me the unique opportunity to conduct this proposed study. During the
K99 phase, Dr. Singer will help me develop the skills to image mRNAs in yeast and cultured neurons. Extending
my research from yeast to neurons will increase the impact of my future research. Dr. Michael Rout (Co-Mentor)
will provide the expertise to identify the proteins that bind to the co-localizing mRNAs. Dr. Liza Pon (Co-Mentor),
Dr. Thomas Fox (Consultant), and Dr. Christof Osman (Collaborator) form my mitochondrial mentoring team.
Their diverse background will allow me to acquire the knowledge and skills of different aspects of mitochondria.
This study will open opportunities to study the spatial regulation of mitochondrial gene expression. It will serve
as a foundation for an independent research program in my future laboratory.
项目总结:
线粒体对于高能量需求的细胞来说是至关重要的。线粒体ATP合成酶完成了最终的
三磷酸腺苷生产步骤。ATP合成酶的突变会导致一系列疾病,包括精神分裂症和
心力衰竭。因此,三磷酸腺苷合成酶的基础生物学对健康和疾病具有重要意义。
三磷酸腺苷合成酶的亚基由核和线粒体基因组编码。一个独特的挑战
组装三磷酸腺苷合酶的关键是协调来自双重遗传来源的基因表达。最新研究
表明胞质和线粒体的翻译在时间上是同步的,以维持化学计量比
ATP合成酶亚基(Couvillion,M.T.,et al.《自然》,2016;索托,我,等人。基因组生物学,2022年)。然而,
这种跨隔室通讯的潜在机制在很大程度上仍不清楚。我的目标是填写
这项拟议研究中的知识差距。在酵母中使用单分子荧光原位杂交(SmFISH),
我对核编码亚基ATP2和线粒体编码亚基ATP6/8的mRNAs进行了成像
发现ATP2和ATP6/8mRNA共定位于线粒体网络。在此基础上
观察到,我假设胞质和线粒体的翻译共定位在大脑的两侧
线粒体双层膜,从而促进了ATP合成酶的组装。在目标1中,我建议
确定ATP2 mRNAs如何与线粒体共翻译关联。在目标2中,我将定义空间
酵母和培养神经元中胞质和线粒体mRNAs之间的协调。在目标3中,我将
确定调节蛋白并剖析跨隔室共定位的潜在机制。
这项研究将揭示一种细胞在空间上协调细胞核和线粒体的新机制
线粒体生物发生过程中的基因表达。
我在彼得·沃尔特博士那里接受的博士培训使我掌握了细胞器生物学、酵母细胞生物学和
生物化学。我在罗伯特·辛格博士那里接受的博士后培训使我掌握了单分子方面的专业知识
成像。这些互补的技能给了我进行这项拟议研究的独特机会。在.期间
在K99阶段,Singer博士将帮助我开发在酵母和培养的神经元中对mRNA进行成像的技能。扩展
我从酵母到神经元的研究将增加我未来研究的影响。迈克尔·鲁特博士(共同导师)
将提供专业知识来识别与共同定位的mRNAs结合的蛋白质。Liza Pon博士(共同导师),
托马斯·福克斯博士(顾问)和克里斯托夫·奥斯曼博士(合作者)组成了我的线粒体指导团队。
他们不同的背景将使我获得线粒体不同方面的知识和技能。
这项研究将为研究线粒体基因表达的空间调控提供机会。它将服务于
作为我未来实验室独立研究项目的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weihan Li其他文献
Weihan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




