Intracranial Electrophysiology & Anatomical Connectivity of Voice-Selective Auditory Cortex
颅内电生理学
基本信息
- 批准号:10747659
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAnatomyAnteriorAreaAuditory areaBrainCharacteristicsChildhoodClassificationClinicalCodeCommunicationCommunication impairmentComplexCuesDataDedicationsDevelopmentDiffusion Magnetic Resonance ImagingDimensionsDistantElectroencephalographyElectrophysiology (science)EmotionsEngineeringEpilepsyEvaluationExhibitsFamilyFunctional Magnetic Resonance ImagingGenderHumanInferior frontal gyrusLinguisticsMeasuresMentorsModelingMonitorNeuronsNoiseOperative Surgical ProceduresParticipantPathway interactionsPatientsPatternPerceptionPhysiologicalPopulationPrecentral gyrusPrimatesProcessProductionPropertyPsycholinguisticsPublishingResearchResearch TrainingScientistSensory DisordersSpeech PerceptionStimulusStructure of superior temporal sulcusSuperior temporal gyrusTemporal LobeTestingTrainingVoiceWorkauditory stimulusblood oxygenation level dependent responsefrontal lobeinterestmultidisciplinarymultimodal datamultimodal neuroimagingmultimodalityneuralneural networkneuroimagingneurophysiologyneurosurgerynonhuman primatenovelnovel therapeuticsrecruitresponsesocial communicationsoundstructural imagingsupport networktheoriestractographytraining opportunityverbalvocalizationvoice recognitionwhite matter
项目摘要
ABTRACT:
The ability to recognize voice is an intricate feat of human audition. For the listener, the brain is able to
seamlessly extract complex linguistic and non-linguistic cues from highly variable vocal acoustic input.
Neuroimaging studies have proposed specialized regions of auditory cortex dedicated to voice perception,
including superior temporal gyrus (STG) and superior temporal sulcus (STS), referred to as “temporal voice
areas”. Functional neuroimaging studies also demonstrate these areas respond most strongly to vocalizations
of the same-species compared to other primate vocalizations and natural sounds, further suggesting
specialization of auditory cortex for vocal acoustic stimuli. It remains unknown if these regions demonstrate
true selectivity for voice, or more generally function to process the spectrotemporal features of complex
auditory stimuli, such as voice. The voice perception network has been partially described by neuroimaging
studies and suggests temporal voice areas exhibit connectivity to inferior frontal gyrus and precentral gyrus,
however these studies are limited in their ability to characterize voice areas at physiologic timescales and have
largely focused on characterizing frontotemporal white matter pathways underlying speech perception and
production. The proposed research aims to characterize local electrophysiologic responses to voice in
temporal voice areas and will describe the frontotemporal structural connectivity of the voice
perception network. I will leverage intracranial electroencephalography (iEEG) from neural populations
across human auditory cortex in 15 patient-participants undergoing epilepsy surgery evaluation to examine the
neural representation of voice. Neural recordings will be acquired while participants listen to a published Voice
Localizer stimulus set optimized for iEEG research, as well as an engineered acoustic stimulus set from
modulated noise that mimick the spectrotemporal features of voice and other natural sounds, called Gaussian
Sound Patterns (GSPs). Frontotemporal connectivity of voice-selective auditory cortex will be examined across
patients using clinically-acquired diffusion tensor imaging (DTI) in all patients with Voice Localizer recruited to
date (n=11) and included in this proposal (n=15). Connectivity analyses will reveal regions of frontal cortex
demonstrating connectivity to neuronal populations along STG and STS with the greatest voice-selective
responses. Together this proposal will leverage a multimodal dataset that marries local cortical iEEG
recordings at physiologic timescales and DTI structural connectivity analysis to critically examine voice
selective auditory cortex.
摘要:
识别声音的能力是人类听觉的一项复杂的壮举。对于听者来说,大脑能够
从高度可变的声音输入中无缝提取复杂的语言和非语言线索。
神经影像学研究提出听觉皮层专门负责声音感知的区域,
包括颞上回(STG)和颞上沟(STS),简称“颞声”
功能性神经影像学研究还表明这些区域对发声反应最强烈
与其他灵长类动物的发声和自然声音相比,同一物种的发声和自然声音,进一步表明
听觉皮层对声音声刺激的专门化。目前尚不清楚这些地区是否表现出
语音的真正选择性,或者更一般地用于处理复杂的频谱时间特征
听觉刺激,例如声音。神经影像学已经部分描述了语音感知网络
研究并表明颞发声区表现出与额下回和中央前回的连通性,
然而,这些研究在生理时间尺度上表征声音区域的能力有限,并且
主要集中于表征言语感知和基础的额颞叶白质通路
生产。拟议的研究旨在表征对声音的局部电生理反应
颞部语音区域并将描述语音的额颞叶结构连接
感知网络。我将利用神经群体的颅内脑电图 (iEEG)
对 15 名接受癫痫手术的患者参与者进行人类听觉皮层评估,以检查
声音的神经表征。当参与者聆听已发布的声音时,将获取神经录音
针对 iEEG 研究优化的定位器刺激集,以及来自
模仿语音和其他自然声音的频谱时间特征的调制噪声,称为高斯噪声
声音模式 (GSP)。将检查声音选择性听觉皮层的额颞叶连接
在所有使用语音定位器的患者中使用临床获得的弥散张量成像 (DTI) 的患者
日期(n=11)并包含在本提案中(n=15)。连接性分析将揭示额叶皮层区域
展示了沿着 STG 和 STS 与神经元群的连接性,具有最大的语音选择性
回应。该提案将共同利用与局部皮质 iEEG 相结合的多模式数据集
生理时间尺度的录音和 DTI 结构连接分析,以严格检查声音
选择性听觉皮层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jasmine Hect其他文献
Jasmine Hect的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant