Neural Correlates of Auditory, Visual, and Audiovisual Motion Perception in Macaque Extrastriate Cortex

猕猴纹状体外皮层听觉、视觉和视听运动知觉的神经相关性

基本信息

  • 批准号:
    10751148
  • 负责人:
  • 金额:
    $ 3.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-30 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Our world is highly multisensory, and we acquire information about it via a number of distinct sensory systems. Typically, objects or events are specified by more than a single sense, and the integration of this multisensory information confers powerful and adaptive perceptual and behavioral advantages such as faster and more accurate responses. These advantages become pivotal when navigating complex environments where motion is ubiquitous, as is the case in the real world. However, multisensory processing also presents a computational challenge for the brain: to carry it out efficiently, the brain needs to not only decide which pieces of sensory information belong to the same event (and thus should be integrated or bound), but also which information needs to be segregated. Although great strides have been made in recent years to further our understanding of multisensory perception and its neural correlates, there are still significant gaps in our knowledge with regards to processing more ecologically-valid stimuli, such as those containing motion. One of these gaps revolves around how motion information is transformed in the presence of modulatory, cross-modal input as it makes its way through successive stages of the cortical processing hierarchy, and how these transformations map on to behavior/perception. The experiments outlined in the current proposal begin to address this issue using behavioral paradigms that we have developed in which macaques signal the direction of an auditory, visual, or audiovisual motion stimulus. During performance of the task, we will record neural activity in two cortical domains reflecting successive levels in the processing hierarchy: the medial temporal (MT) and medial superior temporal (MST) areas. The first aim will examine how modality and motion strength within audiovisual stimuli impact discrimination behavior and contribute towards causal inference. The second aim seeks to characterize responses to auditory, visual, and audiovisual motion information in these areas with the overarching hypothesis that as motion information ascends from MT to MST, there will be an increase in the role of modulatory auditory input, reflective of a gradual shift from encoding low-level stimulus features such as signal strength toward the encoding of features relevant to goal-oriented behavior such as stimulus direction and task demands. Collectively, the work will shed great light on the mechanistic underpinnings of multisensory perception in nodes critical to motion processing. Additionally, success in these experiments would challenge how we think about the modularity of the sensory cortical processing hierarchy. Such knowledge is of increasing importance given the growing recognition of altered multisensory function in those with neurodevelopmental conditions and/or sensory function loss, as well as the value of brain-informed algorithms for naturalistic virtual and augmented reality technology.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adriana Schoenhaut其他文献

Adriana Schoenhaut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了