Evaluating autophagy modulation as a therapeutic strategy for Alzheimer's Disease using human neuronal culture models

使用人类神经元培养模型评估自噬调节作为阿尔茨海默病的治疗策略

基本信息

  • 批准号:
    10750709
  • 负责人:
  • 金额:
    $ 5.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-16 至 2027-08-15
  • 项目状态:
    未结题

项目摘要

ABSTRACT To date there is no effective treatment for Alzheimer’s disease that decreases cognitive decline. Although the available drugs are effective at reducing amyloid beta, a multi-target drug approach is more likely to succeed in impacting cognitive function. One potentially complementary treatment approach is modulation of the autophagic lysosomal pathway (ALP), which is responsible for protein turnover and has been shown to regulate degradation of misfolded proteins in the CNS. Autophagy activation normally helps clear protein aggregates and damaged organelles via sequestration into autophagosomes, these vesicles eventually fuse with lysosomes, which then degrade the autophagic cargo. This pathway is more complicated in long-lived, polarized neurons, where autophagy largely initiates in the distal axon and thus autophagic lysosomal intermediates must be removed from the axon via retrograde transport to the soma where proteolytically active lysosomes reside. Disruptions in the transport or maturation of ALP intermediates has long been implicated in AD pathogenesis, as they buildup in dystrophic neurites around Aβ aggregates and likely contribute to Aβ production in AD. Preliminary data in our AD model of iPSC-derived human i3Neurons shows that ALP intermediates that accumulate in axonal swellings are cleared upon treatment with a novel compound identified in a high throughput screen as an autophagy upregulator in Hela cells. Importantly, our data shows that this compound also reduces both intracellular and extracellular Aβ42 and increases neuronal autophagy (increased LC3II/LC3I) in our AD model i3Neurons. Exciting new data from the Aldrich lab has identified lysosomal membrane protein 1 (LAMP1) as a direct target of the compound. Given these preliminary studies, we hypothesize that the novel compound, through direct interaction with LAMP1 and potential stabilization of LAMP1 interactions with retrograde machinery, increases retrograde lysosomal transport and autophagosome maturation, and thus clears axonal ALP vesicles and ultimately lowers Aβ levels. We will test this hypothesis by determining the mechanism by which the novel compound alters ALP transport and ALP composition and function, as well as identify new potential targets in neurons (by an unbiased proteomics approach). Through these studies, we will also determine if the FDA-approved drug Rapamycin can alter axonal ALP buildup or Aβ42 levels in comparison to the novel compound, thus shedding new insight into the translational potential of both drugs. Lastly, we will determine if the novel compound can reduce Aβ42 in a familial AD model and how it alters ALP in these neurons. Given the strong evidence that this compound can modulate axonal ALP transport, Aβ42 and neuronal autophagy, the results from the proposed experiments could be relevant to therapeutic approaches in other neurodegenerative diseases that have ALP dysfunction as a contributing pathological feature, such as Parkinson’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia.
摘要 到目前为止,还没有有效的治疗阿尔茨海默病的方法来减少认知能力的下降。虽然 现有的药物在减少β淀粉样蛋白方面是有效的,多靶点药物方法更有可能成功, 影响认知功能一种潜在的补充治疗方法是调节自噬细胞的增殖。 溶酶体途径(ALP),其负责蛋白质周转并已被证明调节降解 中枢神经系统中错误折叠的蛋白质。自噬激活通常有助于清除蛋白质聚集和受损 细胞器通过螯合进入自噬体,这些囊泡最终与溶酶体融合, 降解自噬物这种途径在长寿的极化神经元中更为复杂, 自噬主要起始于远端轴突,因此必须去除自噬溶酶体中间体 从轴突通过逆行运输到蛋白水解活性溶酶体所在的索马。中断 ALP中间体的转运或成熟长期以来一直与AD发病机制有关,因为它们的积累 在Aβ聚集周围的营养不良神经突中,可能有助于AD中的Aβ产生。我们的初步数据 iPSC衍生的人i3神经元的AD模型显示,在轴突神经元中积累的ALP中间体 在高通量筛选中被鉴定为自噬的新化合物治疗后被清除 在Hela细胞中表达上调。重要的是,我们的数据表明,这种化合物还减少了细胞内和细胞外的细胞毒性。 在我们的AD模型i3神经元中,细胞外Aβ42和增加神经元自噬(增加的LC 3 II/LC 3 I)。 来自Aldrich实验室的令人兴奋的新数据已经确定溶酶体膜蛋白1(LAMP 1)为直接靶点 化合物。鉴于这些初步研究,我们假设新化合物,通过直接 与LAMP 1的相互作用以及LAMP 1与逆行机制相互作用的潜在稳定, 增加溶酶体逆行转运和自噬体成熟,从而清除轴突ALP 囊泡并最终降低Aβ水平。我们将通过确定 该新化合物改变ALP转运和ALP组成和功能,以及鉴定新的潜力 神经元中的靶点(通过无偏蛋白质组学方法)。通过这些研究,我们还将确定 FDA批准的药物雷帕霉素可以改变轴突ALP积聚或Aβ42水平, 化合物,从而对两种药物的转化潜力有了新的认识。最后,我们将确定 这种新化合物可以减少家族性AD模型中的Aβ42,以及它如何改变这些神经元中的ALP。鉴于 强有力的证据表明,这种化合物可以调节轴突ALP转运,Aβ42和神经元自噬, 所提出的实验结果可能与其他神经退行性疾病的治疗方法有关。 具有ALP功能障碍作为促成病理特征的疾病,如帕金森病, 肌萎缩侧索硬化症和额颞叶痴呆症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amanda Snead其他文献

Amanda Snead的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了