Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair

整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症

基本信息

  • 批准号:
    10751099
  • 负责人:
  • 金额:
    $ 4.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-16 至 2026-08-15
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Injury to the ankle syndesmosis is common in orthopaedic injuries like ankle fractures and sprains. Surgical repair of the ankle syndesmosis involves rigid fixation of the fibula to the tibia. The etiology of poor patient outcomes following syndesmotic repair, such as pain and osteoarthritis, is not well understood. The central hypothesis of this work posits that syndesmotic repair disrupts the biomechanics of the entire lower limb. Humans comprise one of only two orders in the Animal Kingdom with specialized, fully-mobile fibulae. Fibular motion facilitates shock absorption and stabilization throughout the lower limb. As the lower limb forms an interdependent, mechanical chain, fibular fixation could disrupt both the biomechanics and function of the entire lower limb from the hip to the foot. Our long-term goal is to advance diagnostic and treatment paradigms for syndesmotic injury by better understanding the biomechanical role of the mobile fibula. The objective of this work is to characterize fibular biomechanics and associated sequelae through comparative examination of subjects with healthy, mobile fibulae and surgically immobilized fibulae. We will first evaluate biomechanical differences between healthy individuals and individuals with surgically repaired ankle syndesmoses (Aim 1). We will record motion capture, force, and electromyography data during locomotion, functional, and athletic tasks. Using our experimental data, we will leverage musculoskeletal simulations to assess the effect of fibular mobility on hindfoot joint reaction forces (Aim 2). Finally, we will use explainable machine learning to predict syndesmotic injury state from biomechanical data and identify high-impact predictors (Aim 3). By combining innovative experimental and computational methods, we will improve the biomechanistic understanding of implications of fibular fixation during syndesmotic repair. Understanding what biomechanical differences and functional deficits are associated with syndesmotic repair will provide evidence for new surgical and rehabilitative protocols. Identifying which biomechanical changes are high impact predictors of syndesmotic repair will lay the groundwork to develop data-driven diagnostics and prognostics for syndesmotic injury. Through this proposal, the applicant will obtain training on a unique combination of experimental biomechanics methods (e.g., motion capture, surface and intramuscular electromyography (EMG), ultrasound imaging) and quantitative data-driven approaches (e.g., musculoskeletal simulation, machine learning). The University of Florida will provide the applicant outstanding opportunities for interdisciplinary research, exceptional mentors, and a phenomenal training environment. Further, the University’s AI Initiative provides an unparalleled opportunity to develop world-class AI expertise. These experiences will enhance the applicant’s technical and professional skills, providing the training needed for a successful career as an academic researcher.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chloe Baratta其他文献

Chloe Baratta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 4.24万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
  • 批准号:
    23KK0126
  • 财政年份:
    2023
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.24万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了