Understanding the mechanism of diversity generation through directional selection
通过定向选择理解多样性产生的机制
基本信息
- 批准号:10749798
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-14 至 2025-08-13
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAntifungal AgentsAwarenessBar CodesBehaviorBiological AssayBiologyCellsClassificationCollectionCommunitiesCyclic AMP-Dependent Protein KinasesDNADataData AnalysesData SetDevelopmentDiseaseDoctor of PhilosophyDrug resistanceEffectivenessEnvironmentEvolutionExhibitsExposure toGene ExpressionGenerationsGenesGeneticGenomeGenomicsGenotypeGlucoseGoalsGrantGrowthHome environmentIndividualInfectionLaboratoriesLeadershipLearningMalignant NeoplasmsMeasurementMeasuresMethodsMolecularMolecular EvolutionMolecular GeneticsMutationNutrient DepletionOrganismOsmolar ConcentrationPathway interactionsPatternPhasePhenotypePhysiologicalPhysiologyPopulation GeneticsProcessRecurrenceResearchResearch PersonnelResistanceResourcesSaccharomyces cerevisiaeSignal PathwaySplit-Pool Ligation Transcriptome sequencingTechnologyTestingTherapeuticTimeTrainingWritingYeastscancer therapycombinatorialdrug resistant pathogenexpectationexperimental studyfitnessgenomic datainsightloss of function mutationmodel organismmolecular phenotypemutantnovelpathogenpressureresponsesingle-cell RNA sequencingskillstheoriestherapy developmenttranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
Understanding the general rules of adaptation has implications for treating diseases caused by evolving
entities such as cancer and drug-resistant infections. In attempts to uncover these general rules, previous
research has revealed a seemingly paradoxical phenomenon. On the one hand, under selective pressure,
adaptive mutations arise quickly, have large fitness effects, localize to a few functionally similar genes, and
likely exploit the same adaptive strategy. On the other hand, laboratory-evolved organisms show a wide range
of diverse physiological changes. This means that directional selection increases rather than decreases
phenotypic diversity. This phenomenon likely explains our limited ability to predict the effectiveness of
anticancer therapies, because even genetically similar cancers can have highly diverse physiologies. In this
project, I will use a collection of several hundred well-studied adaptive S. cerevisiae mutants, isolated from a
single evolution experiment, to test two mechanistic hypotheses of how selection might generate diversity. My
working hypothesis is that selection generates diversity through combinatorial loss of plastic responses. The
alternative hypothesis is that selection generates diversity through the gain of novel responses.
To distinguish between these two hypotheses, I will measure the molecular phenotypes of the adaptive
mutants with two RNA sequencing technologies. In Aim 1, I will use bulk RNA sequencing on 10 carefully
selected mutants, grown in the environment in which they evolved, in order to gain the first insight into the
molecular mechanism of their adaptive strategy. In Aim 2, I will use a state-of-the-art, high-throughput,
barcode-aware RNA sequencing approach called Split-Seq to measure the full scope of the adaptive mutants'
phenotypes which are most prominent in various extreme environments. This will reveal if the adaptive mutants
achieve high fitness in the evolution environment and high diversity in other environments through loss of
plasticity or by creating novel responses. Uncovering the mechanism of how selection generates diversity will
contribute to our general understanding of adaptation and have implications for treating diseases driven by
evolutionary adaptation, such as cancer and drug-resistant infections.
During my PhD, I received strong training in molecular genetics and learned basic wet lab skills but had
little exposure to evolutionary theory or genomics. Undertaking this project will greatly expand my conceptual
and technological toolkit, as I will learn molecular evolution and population genetics, as well as genomics
methods like barcode tracking and RNA sequencing. I will receive formal and informal training in evolutionary
theory, programming, genomics data analysis, grant writing, and professional leadership. This will prepare me
to become an independent researcher and leader in the interdisciplinary field of molecular and evolutionary
biology.
项目摘要
理解适应的一般规则对于治疗由进化引起的疾病具有重要意义。
实体,如癌症和耐药感染。为了揭示这些一般规律,以前的
研究揭示了一个看似矛盾的现象。一方面,在选择性压力下,
适应性突变出现迅速,具有较大的适应性效应,定位于少数功能相似的基因,
可能会采用相同的适应策略。另一方面,实验室进化的生物体显示出广泛的
不同的生理变化。这意味着定向选择增加而不是减少
表型多样性这一现象可能解释了我们有限的能力来预测的有效性,
抗癌疗法,因为即使是基因相似的癌症也可能具有高度不同的生理学。在这
项目中,我将使用一个收集了几百个经过充分研究的自适应S。酿酒酵母突变体,分离自
单一的进化实验,以测试选择如何产生多样性的两个机制假设。我
工作假设是,选择通过塑性反应的组合损失产生多样性。的
另一种假设是,选择通过获得新的反应产生多样性。
为了区分这两种假设,我将测量适应性细胞的分子表型。
两种RNA测序技术。在目标1中,我将小心地对10使用批量RNA测序
选择的突变体,在他们进化的环境中生长,为了获得第一个洞察力,
适应策略的分子机制。在目标2中,我将使用最先进的高通量,
条形码感知RNA测序方法称为Split-Seq,以测量适应性突变体的全部范围。
在各种极端环境中最突出的表型。这将揭示适应性突变体
在进化环境中实现高适应性,在其他环境中通过丧失
可塑性或创造新的反应。揭示选择如何产生多样性的机制,
有助于我们对适应的一般理解,并对治疗由
进化适应,如癌症和耐药感染。
在我的博士学位期间,我接受了分子遗传学的强有力的培训,并学习了基本的湿实验室技能,
很少接触进化论或基因组学。承担这个项目将大大扩展我的概念
和技术工具包,因为我将学习分子进化和人口遗传学,以及基因组学
比如条形码追踪和RNA测序。我将接受正式和非正式的培训,
理论,编程,基因组学数据分析,赠款写作和专业领导。这会让我做好准备
成为分子和进化的跨学科领域的独立研究者和领导者
生物学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Khristich其他文献
Alexandra Khristich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 7.18万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 7.18万 - 项目类别:
Studentship