Structure-based Antiviral Design against HTLV-1 Protease
基于结构的 HTLV-1 蛋白酶抗病毒设计
基本信息
- 批准号:10750889
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVActive SitesAdultAdult T-Cell Leukemia/LymphomaAdvisory CommitteesAdvocateAffectAffinityAmino Acid SequenceAntiviral AgentsAspartic EndopeptidasesBindingBiochemicalBiological AssayCarcinogensCommunitiesCrystallographyDiseaseEnvironmentEvolutionFamilyHIVHIV ProteaseHIV-1HIV-1 proteaseHIV/HCVHealthHepatitis C virusHumanHuman T-lymphotropic virus 1IndividualInfectionInflammatoryInvestigationLaboratoriesLeadLife Cycle StagesMolecularMutationOncogenicPatientsPeptide HydrolasesPersonsPolyproteinsPopulationPositioning AttributePrevalenceProtease InhibitorProteinsRelapseReportingResearchResistanceRetroviridaeSARS coronavirusSeriesShapesSiteSpecificityStructureSubstrate InteractionSubstrate SpecificityT-Cell LymphomaTechniquesTestingTrainingTranslatingVaccinesViralViral ProteinsVirusX-Ray Crystallographyanalogchronic infectiondesignexperienceinfection rateinhibitorinsightlaboratory experiencemetermolecular dynamicsnovelpressurepreventprotease Soprotein purificationrational designskills
项目摘要
Project Summary
Human T-cell leukemia virus type-1 (HTLV-1) is an oncogenic human retrovirus affecting over 20 million people
worldwide. HTLV-1 infection can cause adult T-cell lymphoma (ATL) and other serious inflammatory diseases.
Estimates report that 5-10% of HTLV-1 infected patients will develop a serious condition such as ATL, which has
poor 4-year survival and high relapse rates. HTLV-1 has persistent infection rates across the globe and reaches
up to 45% prevalence in certain communities. Despite this impact on human health, there are no direct-acting
antivirals (DAAs) or vaccines against HTLV-1. HIV-1 and HTLV-1 are from the same viral family and encode for
a homodimeric aspartyl protease crucial for cleavage of functional proteins from viral polyproteins. The activity
of HIV-1 and HTLV-1 protease is essential to their viral life cycles. The Schiffer laboratory has extensive
experience with viral protease crystallography and inhibition, especially with viral proteases for HIV-1, HCV
NS3/4A, and SARS-CoV-2 main protease. This expertise uniquely positions me to design, synthesize, and
characterize potent, resistance-thwarting protease inhibitors against HTLV-1 protease. Resistance-preventing
DAA design is essential because of the selective pressure applied during DAA treatment. An ideal and proven
strategy for developing a highly potent and resistance-preventing viral protease inhibitor is to target the active
site through rational design using the substrate envelope. The substrate envelope for HTLV-1 protease has not
been characterized and we lack a detailed understanding of the protease substrate specificity. I hypothesize that
by translating strategies from our design of HIV-1 protease inhibitors, namely characterizing HTLV-1 protease’s
substrate specificity, I can design potent and resistance-preventing DAAs for HTLV-1 protease.
Aim 1: Characterize the structural basis for HTLV-1 protease substrate specificity. HTLV-1 protease
cleaves six substrates by recognizing cleavage sites between individual proteins of the viral polyprotein. I will
investigate the molecular basis of this recognition underlying protease specificity by determining cocrystal
structures of the protease with bound substrates. The conserved volume inhabited by the substrates will define
the substrate envelope and inform inhibitor design for HTLV-1 protease. Aim 2: Rationally design, synthesize,
and characterize inhibitors of HTLV-1 protease to optimize potency. HIV-1 and HTLV-1 proteases share an
active site amino acid sequence identity of 45% and high structural similarity. Therefore, I will begin inhibitor
design by testing a selection of our in-house HIV-1 protease inhibitors, which have already shown low (1 µM) to
moderate (30 nM) potency against HTLV-1 protease. I will combine experimental inhibition assays with cocrystal
structure analysis to identify lead compounds for inhibitor design. I will leverage substrate specificity of the
protease by moving inhibitor design towards compounds that mimic the shape of substrates, leveraging the
substrate envelope (Aim 1), and the interactions between protease and substrate. I aim to produce novel, highly
potent (sub-nM) inhibitors that will be promising DAAs for further investigation against HTLV-1.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah N Zvornicanin其他文献
Sarah N Zvornicanin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual