Understanding the impact of DNA ADP-ribosylation on telomere function in cancer cells

了解 DNA ADP-核糖基化对癌细胞端粒功能的影响

基本信息

项目摘要

RESEARCH SUMMARY/ABSTRACT Cancer cells must employ a telomere lengthening mechanism to ensure replicative immortality. 15% of cancer cells utilize Alternative Lengthening of Telomeres (ALT), a homologous recombination-mediated pathway. Perturbation of the ALT mechanism can be achieved by disruption of enzymes involved in ADP-ribosylation, a post-translational modification that regulates several cellular processes including transcription, metabolism, and DNA repair. The pharmacological inhibition of enzymes involved in ADP-ribosylation has proven to be of immense biomedical value in cancer therapy. Over the last 30 years, studies have primarily built on intensive investigation of ADP-ribosylation as a modification that is exclusively found on proteins. Yet, new evidence is emerging that nucleic acids, DNA and RNA, are direct and perhaps even the predominant sources of ADP- ribosylation, especially in the aftermath of DNA damage. This paradigm shift has major implications for our understanding of the physiological function of ADP-ribosylation in ALT. Thus, improving our knowledge of the cellular targets and mechanisms of this new DNA modification will be vital for the development of enhanced ADP-ribose-targeting therapeutics that achieve better clinical outcomes for ALT cancer patients. I found that telomeres, specialized structures at the ends of the chromosomes, are targets of the major ADP-ribosylation enzymes; Poly ADP-ribose Polymerase (PARP1), Poly ADP-ribose Glycohydrolase (PARG), and a newly identified factor known as Terminal ADP-ribose Hydrolase (TARG1). I uncovered that PARP1 coordinates the ADP-ribosylation of telomeric DNA sequences and that TARG1, acting in conjunction with PARG, is responsible for the removal ADP-ribose from telomeric DNA. Furthermore, I show that the disruption of TARG1 expression provokes replicative complications at ALT telomeres that may have catastrophic consequences for cancer cell viability. In Aim 1, I will further assess the impact of DNA ADP-ribosylation and defects in factors that regulate its removal on telomere function and ALT. In Aim 2, I will dissect the impact of co-suppression of TARG1 and PARG, factors that regulate DNA ADP-ribosylation, on cancer cell viability, and the contribution of telomere dysfunction therein. This study will provide new and crucial knowledge on the novel and fundamental role of ADP-ribosylation in ALT. By exploring the impact that its deregulation has on ALT, this study will contribute new insights into how the deregulation of ADP-ribosylation contributes to cancer treatment.
研究总结/摘要 癌细胞必须使用端粒延长机制,以确保复制不朽。15%的癌症 细胞利用端粒交替延长(ALT),这是一种同源重组介导的途径。 ALT机制的扰动可以通过破坏参与ADP-核糖化的酶来实现,a 翻译后修饰,调节几个细胞过程,包括转录、代谢和 DNA修复。参与ADP-核糖化的酶的药理抑制已被证明是 癌症治疗中巨大的生物医学价值。在过去的30年里,研究主要建立在密集的基础上 研究ADP-核糖化作为一种修饰,仅在蛋白质上发现。然而,新的证据是 核酸,DNA和RNA,是ADP的直接来源,甚至是主要来源- 核糖化,尤其是在DNA损伤之后。这一范式转变对我们的 了解腺苷二磷酸核糖化在ALT中的生理作用。因此,提高我们对 这种新的DNA修饰的细胞靶点和机制将对增强的 ADP-核糖靶向治疗,为ALT癌症患者取得更好的临床结果。 我发现端粒,染色体末端的特殊结构,是主要的 多聚ADP核糖聚合酶(PARP1),多ADP核糖水解酶(PARG), 和一种新发现的被称为末端ADP-核糖水解酶(TARG1)的因子。我发现了PARP1 协调端粒DNA序列的ADP-核糖化和TARG1,与 PARG负责从端粒DNA中去除ADP-核糖。此外,我证明了这种扰乱 TARG1的表达引发ALT端粒的复制并发症,可能具有灾难性的 对癌细胞活性的影响。在目标1中,我将进一步评估DNA ADP-核糖化和 调节其去除的因素对端粒功能和ALT的影响存在缺陷。在目标2中,我将剖析 调节DNA ADP核糖化的TARG1和PARG对癌细胞活力的共同抑制,以及 端粒功能障碍在其中的作用。这项研究将为这部小说提供新的关键知识 ADP核糖化在ALT中的基础作用。通过探索其放松管制对ALT的影响,这 这项研究将有助于对ADP-核糖化的解除管制如何有助于癌症治疗的新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Wondisford其他文献

Anne Wondisford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Molecular pathological mechanisms of the brain development disorder using the chromatin-remodeling molecule ATRX gene knockout mouse
染色质重塑分子ATRX基因敲除小鼠脑发育障碍的分子病理机制
  • 批准号:
    23300147
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional analysis of the Zn finger domain encoded by the ATRX gene whose mutations result in X-linked alpha thalassemia mental retardation(ATR-X) syndrome
ATRX基因编码的锌指结构域的功能分析,其突变导致X连锁α地中海贫血精神发育迟滞(ATR-X)综合征
  • 批准号:
    18570170
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Y CHROMOSOME MODEL FOR THE SEX DETERMINING FUNCTION OF THE HUMAN ATRX GENE
人类 ATRX 基因性别决定功能的 Y 染色体模型
  • 批准号:
    nhmrc : 148630
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    NHMRC Project Grants
Investigation of the role of the ATRX gene in normal mammalian development
ATRX 基因在正常哺乳动物发育中的作用研究
  • 批准号:
    nhmrc : 987013
  • 财政年份:
    1998
  • 资助金额:
    $ 5万
  • 项目类别:
    Early Career Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了