Targeting NETosis for the Treatment of Tuberculosis
靶向 NETosis 治疗结核病
基本信息
- 批准号:10750804
- 负责人:
- 金额:$ 62.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAutophagocytosisBindingBronchoalveolar Lavage FluidCell Death ProcessCellsCessation of lifeChemicalsChromatinChromatin StructureComplexCytoplasmic GranulesDNADataDiseaseDissectionGeneticGrowthHistonesHumanImmuneImmune responseIn VitroInfectionInfection ControlInflammationInterferon Type IInternetLinkLungLysosomesMacrophageMediatingMusMycobacterium tuberculosisNutrientPathogenesisPathologyPathway interactionsPatientsPeptide HydrolasesPhagocytosisPhagosomesPredispositionProcessProductionProtein-arginine deiminaseProteinsReactionResectedRoleSeverity of illnessSignal TransductionSputumStructure of parenchyma of lungTissuesTuberculosisVesicleantimicrobialcell typecytokineeffective therapyextracellularimprovedin vivoinsightneutrophilnonhuman primatepathogenresponsetraffickingtuberculosis treatmentvesicular release
项目摘要
Abstract
Neutrophils are the most abundant and predominantly-infected cell type in the sputum, bronchoalveolar lavage
fluid, and caseum contents from resected lung tissue of active tuberculosis (TB) patients. Studies of TB in
mice, non-human primates, and humans have identified a correlation between neutrophil abundance and
increased disease severity. Although there is a growing appreciation for the association of increased neutrophil
abundance with active TB disease, it was still unknown if the presence of neutrophils in the lungs of active TB
patients is consequential, or if the neutrophils are bystanders reacting to an uncontrolled infection. In particular,
the details on how specific neutrophil responses and effector functions impact TB disease have remained
elusive. In response to Mycobacterium tuberculosis (Mtb) infection, neutrophils deploy a number of defenses
including the extrusion of neutrophil extracellular traps (NETs) via a process of cell death termed NETosis.
NETosis usually follows the general steps of 1) histone citrullination, 2) chromatin decondensation, and 3)
release of web-like chromatin structures decorated with antimicrobial granule proteins with the potential to
bind, trap, and kill pathogens. We have recently discovered that NETosis directly promotes Mtb
replication, where genetic or chemical inhibition of NETosis mediates better control of Mtb infection in vitro and
in vivo, thus validating NETosis as a potential target for host-directed therapies to treat TB. We have used
genetic and chemical approaches to mechanistically dissect the process of NETosis during Mtb infection,
which has identified a number of regulatory nodes that can be manipulated to lead to better control of Mtb
pathogenesis. We find that in response to Mtb infection in neutrophils, protein arginine deiminase 4 (PAD4)
citrullinates histones to decondense chromatin that gets packaged into vesicles for release as NETs in a
manner that promotes Mtb replication. We discovered that type I interferon (IFN), which has been associated
with NETosis in numerous contexts but without a known mechanism, promotes the formation of
chromatin-containing vesicles and NET release. In addition, we discovered a new autophagy-independent
role for the ATG5 protein in suppressing NETosis by blocking type I IFN-dependent induction of PAD4 activity
during Mtb infection, where increased NETosis in the absence of ATG5 expression in neutrophils leads to
susceptibility to Mtb. Multiple studies have linked increased levels of type I IFN signaling with TB pathology in
mice and humans. Based on our data that NETosis promotes Mtb replication and pathogenesis, NETosis
could contribute to the ways that type I IFN signaling impedes control of Mtb infection. In this proposal, we
will dissect how NETosis is regulated during Mtb infection (Aim 1), how NETosis contributes to Mtb replication
(Aim 2), and how NETosis contributes to loss of control of infection (Aim 3). By pursuing our Aims, we will
identify regulatory mechanisms to be targeted by HDTs aimed at blocking NETosis during Mtb infection as well
as determine what consequences result from blocking NETosis during Mtb infection.
摘要
中性粒细胞是痰、支气管肺泡灌洗液中最丰富和最易感染的细胞类型。
活动性肺结核(TB)患者切除的肺组织中的液体和酪蛋白含量。关于结核病的研究
老鼠、非人类灵长类动物和人类已经确定了中性粒细胞丰度和
增加了疾病的严重性。尽管越来越多的人意识到中性粒细胞增多的关联
活动性肺结核患者肺中是否存在中性粒细胞尚不清楚
患者是后果性的,或者如果中性粒细胞是对不受控制的感染做出反应的旁观者。特别是,
关于特定的中性粒细胞反应和效应器功能如何影响结核病的细节仍然存在。
难以捉摸。为了应对结核分枝杆菌(Mtb)感染,中性粒细胞部署了许多防御措施
包括中性粒细胞胞外陷阱(NETs)通过一种称为NETsis的细胞死亡过程排出。
网织通常遵循以下一般步骤:1)组蛋白瓜氨酸化,2)染色质解缩,3)
释放带有抗菌颗粒蛋白装饰的网状染色质结构,具有潜在的
绑定、诱捕和杀灭病原体。我们最近发现,非结核分枝杆菌病直接促进结核分枝杆菌
复制,在这种情况下,基因或化学抑制蚊媒感染在体外和更好地控制结核分枝杆菌感染
在活体内,从而验证了NETsis作为宿主指导的治疗结核病的潜在靶点。我们已经使用了
用遗传和化学方法机械地剖析结核分枝杆菌感染期间的蚊虫感染过程,
它已经确定了一些可以被操纵以更好地控制结核分枝杆菌的监管节点
发病机制。我们发现,在中性粒细胞中,作为对结核分枝杆菌感染的反应,精氨酸脱亚胺酶4(PAD4)蛋白。
瓜氨酸化组蛋白为解聚的染色质,染色质被包装成小泡以Net形式在
促进结核杆菌复制的方式。我们发现I型干扰素(干扰素),它已经被认为与
在许多情况下,网织红细胞增多,但没有已知的机制,促进了
含染色质的囊泡和净释放。此外,我们发现了一种新的不依赖于自噬的
ATG5蛋白通过阻断依赖I型干扰素诱导的PAD4活性抑制网织红细胞增多症
在结核分枝杆菌感染期间,中性粒细胞中没有ATG5表达的网织红细胞增多会导致
对结核分枝杆菌的敏感性。多项研究已将I型干扰素信号水平升高与结核病病理联系起来
老鼠和人类。根据我们的数据,蚊虫病促进结核分枝杆菌复制和发病
可能与I型干扰素信号阻碍结核分枝杆菌感染控制的方式有关。在这项提案中,我们
将剖析在结核分枝杆菌感染期间,蚊虫感染是如何被调控的(目标1),蚊虫如何促进结核杆菌复制
(目标2),以及蚊虫感染如何导致感染失控(目标3)。通过追求我们的目标,我们将
确定HDTS的目标调控机制,旨在阻止结核分枝杆菌感染期间的蚊虫感染
确定在结核分枝杆菌感染期间阻断蚊虫感染会产生什么后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina Leigh Stallings其他文献
Christina Leigh Stallings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina Leigh Stallings', 18)}}的其他基金
Autophagy proteins in the immune response to Mycobacterium tuberculosis infection
自噬蛋白在结核分枝杆菌感染免疫反应中的作用
- 批准号:
10509384 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Autophagy proteins in the immune response to Mycobacterium tuberculosis infection
自噬蛋白在结核分枝杆菌感染免疫反应中的作用
- 批准号:
10293605 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Autophagy proteins in the immune response to Mycobacterium tuberculosis infection
自噬蛋白在结核分枝杆菌感染免疫反应中的作用
- 批准号:
10054156 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Targeting a New Essential Virulence Mechanism in Drug-Resistant Mycobacteria
针对耐药分枝杆菌的新基本毒力机制
- 批准号:
8704078 - 财政年份:2014
- 资助金额:
$ 62.96万 - 项目类别:
Targeting a New Essential Virulence Mechanism in Drug-Resistant Mycobacteria
针对耐药分枝杆菌的新基本毒力机制
- 批准号:
8802858 - 财政年份:2014
- 资助金额:
$ 62.96万 - 项目类别:
Mediation of DNA Repair in Mycobacteria by CarD Proteins and ADP-RIbosylation
CarD 蛋白和 ADP-核糖基化介导分枝杆菌 DNA 修复
- 批准号:
7330180 - 财政年份:2007
- 资助金额:
$ 62.96万 - 项目类别:
Mediation of DNA Repair in Mycobacteria by CarD Proteins and ADP-RIbosylation
CarD 蛋白和 ADP-核糖基化介导分枝杆菌 DNA 修复
- 批准号:
7492151 - 财政年份:2007
- 资助金额:
$ 62.96万 - 项目类别:
Mediation of DNA Repair in Mycobacteria by CarD Proteins and ADP-RIbosylation
CarD 蛋白和 ADP-核糖基化介导分枝杆菌 DNA 修复
- 批准号:
7636889 - 财政年份:2007
- 资助金额:
$ 62.96万 - 项目类别: