The Neglected Subiculum: Decoding and Manipulating Memory Retrieval with Multiphoton Holography
被忽视的下托:用多光子全息术解码和操纵记忆检索
基本信息
- 批准号:10755033
- 负责人:
- 金额:$ 4.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAreaAtrophicAversive StimulusBehaviorBehavioralBehavioral AssayBiological AssayBrainBrain regionCalciumCellsCodeComputer AnalysisCuesDevelopmentDiseaseElectrophysiology (science)EngineeringEnsureFunctional disorderGoalsHeadHippocampal FormationHippocampusHolographyImageImmediate-Early GenesImpaired cognitionKnowledgeLaboratoriesLearningLifeMeasuresMemoryMemory impairmentMentorshipMusNeurobiologyNeurodegenerative DisordersNeuronsNeurosciencesOutputPathologicPhasePhysiologicalPlayPositioning AttributePostdoctoral FellowProtocols documentationRecording of previous eventsRecurrenceResearchResearch PersonnelResearch Project GrantsResolutionRetrievalRoleSlideSpecificityStimulusSystemTestingTrainingauditory stimuluscareerclinically significantcomputational basisconditioned feardesigndisadvantaged backgroundexperimental studyfear memoryfunctional groupin vivo optical imaginginsightlarge scale datalight weightmemory recallmemory retrievalmulti-photonneglectneuralnoveloptogeneticspre-clinical researchresponseskillstwo-photon
项目摘要
Memory impairment emerges in diverse, clinically-significant conditions spanning all stages of life. After a
memory has been encoded, its retrieval is believed to occur through the reactivation of an engram, the
physiological substrate of memory. Engrams are partitioned into neuronal ensembles—small groups of
functionally-related neurons—that are dispersed throughout the brain. Direct optogenetic stimulation of
engram cells in the hippocampus has proven sufficient to trigger the coordinated reactivation of these
dispersed ensembles. The primary output node of the hippocampus, the subiculum, has proven critical to
the integrity of memory retrieval and is robustly associated with the memory impairments observed in
Alzheimer’s disease. However, despite a rich history of memory research in the hippocampal formation, the
subiculum and its role in memory remain critically understudied. Remarkably, recent evidence indicates the
integrity of the subiculum may be critical for memory retrieval without being necessary for encoding. Identifying
the unique role of the subiculum in memory retrieval is thus a central question in memory research. To address
this gap in knowledge, I will leverage large-scale two-photon calcium imaging alongside holographic
photostimulation to decode and manipulate subicular activity during memory retrieval in mice. I will test the
hypothesis that conjunctive-coding and recurrent-modularity in the subiculum facilitate the coordinated
reactivation of neuronal ensembles during memory retrieval. I have constructed an experimental setup in
which I am able to simultaneously measure (two-photon calcium imaging) and manipulate neural activity (two-
photon holographic optogenetics) in mice during a closed-loop fear conditioning assay. I have found that
partially-overlapping neuronal ensembles in the subiculum encode a variety of task-relevant features during
retrieval, including the temporal gap between the retrieval cue and the anticipated aversive stimuli. In the F99
phase, I will test the hypothesis that the activation of subsets of the identified neuronal ensembles
preferentially drive intra-ensemble activity. To do so, I will be trained in and use two-photon holographic
optogenetics to selectively stimulate arbitrary subsets of intra-ensemble and random neurons. Simultaneously,
I will record the activity of these neurons using two-photon calcium imaging in order to determine whether
stimulation drives persistent activity on an order of magnitude longer than photostimulation duration and
whether such activity is specific to ensemble neurons. In the K00 phase, I will investigate the coordination of
subicular and cortical activity during memory retrieval, and its perturbation in disease. This proposal will
establish a causal understanding of subicular dynamics during memory retrieval, a deeper understanding of
the coordination of memory retrieval across brain regions, and nurture the development of an independent
researcher from a disadvantaged background at the cutting-edge of memory research.
记忆障碍出现在不同的,临床上重要的条件跨越生命的各个阶段。后
记忆已经被编码,它的检索被认为是通过记忆印迹的重新激活而发生的,
记忆的生理基础记忆印痕被划分为神经元的集合体--小的神经元集合体。
功能相关的神经元--它们分散在整个大脑中。直接光遗传学刺激
海马体中的记忆印迹细胞已被证明足以触发这些神经元的协调再激活。
分散的合奏。海马体的主要输出节点,下托,已被证明是至关重要的,
记忆提取的完整性,并与在以下研究中观察到的记忆障碍密切相关:
老年痴呆症然而,尽管海马结构的记忆研究历史悠久,
海马下托及其在记忆中的作用仍然没有得到充分的研究。值得注意的是,最近的证据表明,
下托的完整性对于记忆提取可能是至关重要的,而不是编码所必需的。识别
因此,下托在记忆提取中的独特作用是记忆研究中的一个中心问题。解决
为了填补这一知识空白,我将利用大规模双光子钙成像和全息成像,
光刺激解码和操纵小鼠记忆提取过程中的大脑下托活动。我将测试
假设下托中连接编码和递归模块性促进了协调
在记忆提取过程中神经元集合的重新激活。我已经建立了一个实验装置,
我能够同时测量(双光子钙成像)和操纵神经活动(双光子钙成像),
光子全息光遗传学)。我发现
下托中部分重叠的神经元集合体编码各种任务相关特征,
检索,包括检索线索和预期的厌恶刺激之间的时间间隙。在F99
阶段,我将测试这一假设,即激活的子集确定的神经元合奏
优先驱动内集成活动。为了做到这一点,我将接受训练,并使用双光子全息
光遗传学选择性地刺激内集合和随机神经元的任意子集。与此同时,
我将使用双光子钙成像记录这些神经元的活动,以确定是否
刺激以比光刺激持续时间长的数量级驱动持续活动,
这种活动是否是集合神经元特有的。在K 00阶段,我将调查
记忆提取过程中大脑下托和皮层的活动,以及疾病中的扰动。这项建议会
建立对记忆提取过程中大脑下托动力学的因果关系的理解,
协调大脑各区域的记忆提取,并培养一个独立的
一位来自弱势背景的研究人员,站在记忆研究的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darik Andrew O'Neil其他文献
Darik Andrew O'Neil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}