Computational dissection of cellular and network vulnerability in Alzheimer's and related dementias
阿尔茨海默病和相关痴呆症细胞和网络脆弱性的计算剖析
基本信息
- 批准号:10900995
- 负责人:
- 金额:$ 76.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlprostadilAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease related dementiaAmyloidAmyloid beta-ProteinAtrophicBedsBrainBrain regionCalciumCell modelCellsCellular MorphologyDataDepositionDevelopmentDiffusionDiseaseDissectionElectrophysiology (science)ExhibitsFiberFunctional disorderFutureGenerationsGenesHippocampusHumanJointsLaboratoriesLocationMapsMathematicsMediatingMediatorMicrogliaMitochondriaModelingMolecularMolecular ProfilingMorphologyMusNetwork-basedNeural PathwaysNeuronsNeurosciencesNeurotransmittersOutcomePathologyPathway interactionsPatientsPositron-Emission TomographyPredispositionProcessPropertyResearchSpatial DistributionStatistical ModelsStereotypingStructureSystemTauopathiesTechnologyTestingTransgenic MiceWorkamyloid pathologyanimal databrain cellcell typeconnectomeexperimental studyhippocampal pyramidal neuronhuman datain silicolocus ceruleus structuremathematical modelnetwork modelsneural networkpathogenpredictive modelingprion-likeprotein aggregationprotein misfoldingproteostasisresponsesingle cell sequencingspatiotemporalstressortau Proteinstechnology platformtranscriptomicstransmission process
项目摘要
Project Summary
Alzheimer's disease (AD) is a heterogeneous, multifactorial disease that selectively affects certain regions of the
brain, e.g. locus coeruleus, entorhinal and hippocampus. Factors underlying this selective vulnerability (SV)
remain unclear: Why is progression so stereotyped? Why is pathology seen in specific structures at early stages?
What about certain cells makes them susceptible to AD? Current hypotheses have focused on specific features,
e.g. cytoarchitecture, cell morphology, neurotransmitter system or molecular composition. The concept of cellular
vulnerability (“SV-C”) has gained currency due to advances in single cell sequencing and spatial transcriptomics.
Another vulnerability relates to network-based trans-neuronal “prion-like” transmission of pathology, due to
which certain circuits, fiber pathways and regions (network hubs) may become selectively vulnerable (“SV-N”).
This proposal will quantitatively test and validate hypotheses regarding SV-C and SV-N: 1) Protein aggregation,
clearance and transmission on the network underly the spatiotemporal progression of pathology; hence SV of
certain regions (e.g. EC and Hipp) may simply be a result of their location within the network topology.
Alternatively, 2) SV is dictated by distribution and composition of certain neural cell types (e.g. large pyramidal
neurons) that are selectively targeted by AD pathology. Beyond these are competing hypotheses is the possibility
that both factors combine: 3) Pathology is governed by network transmission, but whose local and spread
parameters are mediated by certain cell types (e.g. microglia). Unfortunately, AD research has so far been unable
to fully test between these hypotheses or to identify which of these vulnerabilities are germane. Much of available
bench, animal or human data are descriptive and do not accommodate quantitative models.
We propose to develop network models for SV-C and SV-N and formal statistical models to test them. We
capitalize and build on two enabling technologies that have recently come out of our laboratory: Matrix Inversion
and Subset Selection (MISS) algorithm for creating whole-brain cell type maps; and Network Diffusion Model
(NDM) which mathematically recapitulates transmission of tau along fiber projections. With further development
of these enabling technologies, we will explore SV-C and SV-N in mouse tauopathy data and human tau- and
amyloid-PET scans. We will also develop and test models where cells or genes mediate network vulnerability
indirectly. If successful this project could lead to conclusive evidence for or against each of the identified SV
hypotheses. We will explore in future work the morphological, molecular or electrophysiological properties of
short-listed cells, genes, neural pathways and network epicenters. Our approach could become a computational
test bed for future hypothesis generation and testing, without requiring expensive and laborious experiments.
Proposed platform technologies (MISS and NexIS) may have even broader applicability in neuroscience.
项目摘要
阿尔茨海默氏病(AD)是一种异质的多因素疾病,有选择地影响
大脑,例如基因座,内嗅和海马。这种选择性脆弱性(SV)的因素
尚不清楚:为什么进步如此刻板印象?为什么在早期的特定结构中看到病理学?
某些细胞使它们容易受到AD的影响?当前的假设集中于特定特征,
例如细胞结构,细胞形态,神经递质系统或分子组成。细胞的概念
由于单细胞测序和空间转录组学的进步,脆弱性(“ SV-C”)已获得货币。
另一个脆弱性涉及基于网络的跨神经元“类似prion”病理的传播
某些电路,纤维路径和区域(网络中心)可能会有选择地脆弱(“ SV-N”)。
该建议将定量检验并验证有关SV-C和SV-N的假设:1)蛋白质聚集,
在病理的时空进展下,网络上的清除和传播;因此
某些区域(例如EC和HIPP)可能仅仅是它们在网络拓扑中的位置的结果。
另外,2)SV取决于某些神经细胞类型的分布和组成(例如大型金字塔
神经元)由AD病理选择性靶向。超越这些假设是可能性
这两个因素结合在一起:3)病理受网络传输的控制,但其本地和传播
参数是由某些细胞类型(例如小胶质细胞)介导的。不幸的是,到目前为止,广告研究一直无法
在这些假设之间进行充分检验或确定这些漏洞中的哪些是隐密的。大部分可用
台,动物或人类数据具有描述性,不适合定量模型。
我们建议为SV-C和SV-N以及正式统计模型开发网络模型来测试它们。
大写并建立在最近从我们的实验室出现的两种有利技术:矩阵倒置
以及用于创建全脑细胞类型图的子集选择(MISS)算法;和网络扩散模型
(NDM)在数学上概括了沿纤维项目的TAU传输。随着进一步的发展
在这些有利的技术中,我们将在小鼠tauopathy数据中探索SV-C和SV-N,以及人类tau-和
淀粉样蛋白-PET扫描。我们还将开发和测试细胞或基因介导网络脆弱性的模型
间接。如果成功,该项目可能会导致对已确定的SV或针对每个已确定的SV的结论性证据
假设。我们将在未来的工作中探索形态,分子或电生理特性
入围细胞,基因,神经途径和网络震中。我们的方法可能成为计算
测试未来假设产生和测试的床,而无需进行昂贵的实验室实验。
拟议的平台技术(MISS和NEXIS)可能在神经科学中更广泛地适用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashish Raj其他文献
Ashish Raj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashish Raj', 18)}}的其他基金
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8179703 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8710353 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8309156 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
- 批准号:
8362778 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8518485 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
- 批准号:
8170580 - 财政年份:2010
- 资助金额:
$ 76.07万 - 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
- 批准号:
7957226 - 财政年份:2009
- 资助金额:
$ 76.07万 - 项目类别:
Bayesian Parallel Imaging For Arbitrarily Sampled MR Data Using Edge-Preserving S
使用边缘保留 S 的任意采样 MR 数据的贝叶斯并行成像
- 批准号:
7528771 - 财政年份:2008
- 资助金额:
$ 76.07万 - 项目类别:
Bayesian Parallel Imaging For Arbitrarily Sampled MR Data Using Edge-Preserving S
使用边缘保留 S 的任意采样 MR 数据的贝叶斯并行成像
- 批准号:
7688029 - 财政年份:2008
- 资助金额:
$ 76.07万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Validation and translation of a non-invasive, MR-guided breast cancer therapy
非侵入性、MR 引导的乳腺癌疗法的验证和转化
- 批准号:
10439144 - 财政年份:2023
- 资助金额:
$ 76.07万 - 项目类别:
Validation and translation of a non-invasive, MR-guided breast cancer therapy
非侵入性、MR 引导的乳腺癌疗法的验证和转化
- 批准号:
10328883 - 财政年份:2018
- 资助金额:
$ 76.07万 - 项目类别:
Detecting biochemical changes in the pregnant mouse cervix by Raman spectroscopy
拉曼光谱检测妊娠小鼠子宫颈的生化变化
- 批准号:
8925122 - 财政年份:2014
- 资助金额:
$ 76.07万 - 项目类别:
Detecting biochemical changes in the pregnant mouse cervix by Raman spectroscopy
拉曼光谱检测妊娠小鼠子宫颈的生化变化
- 批准号:
8766404 - 财政年份:2014
- 资助金额:
$ 76.07万 - 项目类别:
Microdialysis Studies of Seizure-Induced Oxidative Stress
癫痫发作引起的氧化应激的微透析研究
- 批准号:
7696861 - 财政年份:2009
- 资助金额:
$ 76.07万 - 项目类别: