Computational dissection of cellular and network vulnerability in Alzheimer's and related dementias
阿尔茨海默病和相关痴呆症细胞和网络脆弱性的计算剖析
基本信息
- 批准号:10900995
- 负责人:
- 金额:$ 76.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlprostadilAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease related dementiaAmyloidAmyloid beta-ProteinAtrophicBedsBrainBrain regionCalciumCell modelCellsCellular MorphologyDataDepositionDevelopmentDiffusionDiseaseDissectionElectrophysiology (science)ExhibitsFiberFunctional disorderFutureGenerationsGenesHippocampusHumanJointsLaboratoriesLocationMapsMathematicsMediatingMediatorMicrogliaMitochondriaModelingMolecularMolecular ProfilingMorphologyMusNetwork-basedNeural PathwaysNeuronsNeurosciencesNeurotransmittersOutcomePathologyPathway interactionsPatientsPositron-Emission TomographyPredispositionProcessPropertyResearchSpatial DistributionStatistical ModelsStereotypingStructureSystemTauopathiesTechnologyTestingTransgenic MiceWorkamyloid pathologyanimal databrain cellcell typeconnectomeexperimental studyhippocampal pyramidal neuronhuman datain silicolocus ceruleus structuremathematical modelnetwork modelsneural networkpathogenpredictive modelingprion-likeprotein aggregationprotein misfoldingproteostasisresponsesingle cell sequencingspatiotemporalstressortau Proteinstechnology platformtranscriptomicstransmission process
项目摘要
Project Summary
Alzheimer's disease (AD) is a heterogeneous, multifactorial disease that selectively affects certain regions of the
brain, e.g. locus coeruleus, entorhinal and hippocampus. Factors underlying this selective vulnerability (SV)
remain unclear: Why is progression so stereotyped? Why is pathology seen in specific structures at early stages?
What about certain cells makes them susceptible to AD? Current hypotheses have focused on specific features,
e.g. cytoarchitecture, cell morphology, neurotransmitter system or molecular composition. The concept of cellular
vulnerability (“SV-C”) has gained currency due to advances in single cell sequencing and spatial transcriptomics.
Another vulnerability relates to network-based trans-neuronal “prion-like” transmission of pathology, due to
which certain circuits, fiber pathways and regions (network hubs) may become selectively vulnerable (“SV-N”).
This proposal will quantitatively test and validate hypotheses regarding SV-C and SV-N: 1) Protein aggregation,
clearance and transmission on the network underly the spatiotemporal progression of pathology; hence SV of
certain regions (e.g. EC and Hipp) may simply be a result of their location within the network topology.
Alternatively, 2) SV is dictated by distribution and composition of certain neural cell types (e.g. large pyramidal
neurons) that are selectively targeted by AD pathology. Beyond these are competing hypotheses is the possibility
that both factors combine: 3) Pathology is governed by network transmission, but whose local and spread
parameters are mediated by certain cell types (e.g. microglia). Unfortunately, AD research has so far been unable
to fully test between these hypotheses or to identify which of these vulnerabilities are germane. Much of available
bench, animal or human data are descriptive and do not accommodate quantitative models.
We propose to develop network models for SV-C and SV-N and formal statistical models to test them. We
capitalize and build on two enabling technologies that have recently come out of our laboratory: Matrix Inversion
and Subset Selection (MISS) algorithm for creating whole-brain cell type maps; and Network Diffusion Model
(NDM) which mathematically recapitulates transmission of tau along fiber projections. With further development
of these enabling technologies, we will explore SV-C and SV-N in mouse tauopathy data and human tau- and
amyloid-PET scans. We will also develop and test models where cells or genes mediate network vulnerability
indirectly. If successful this project could lead to conclusive evidence for or against each of the identified SV
hypotheses. We will explore in future work the morphological, molecular or electrophysiological properties of
short-listed cells, genes, neural pathways and network epicenters. Our approach could become a computational
test bed for future hypothesis generation and testing, without requiring expensive and laborious experiments.
Proposed platform technologies (MISS and NexIS) may have even broader applicability in neuroscience.
项目概要
阿尔茨海默病 (AD) 是一种异质性、多因素疾病,选择性地影响大脑的某些区域。
大脑,例如蓝斑、内嗅和海马。这种选择性脆弱性 (SV) 的潜在因素
仍不清楚:为什么进展如此刻板?为什么早期阶段会在特定结构中看到病理?
某些细胞为何容易患 AD?目前的假设集中在特定的特征上,
例如细胞结构、细胞形态、神经递质系统或分子组成。蜂窝的概念
由于单细胞测序和空间转录组学的进步,脆弱性(“SV-C”)已获得流行。
另一个漏洞与基于网络的跨神经元“类朊病毒”病理传播有关,这是由于
某些电路、光纤路径和区域(网络集线器)可能会选择性地变得脆弱(“SV-N”)。
该提案将定量测试和验证有关 SV-C 和 SV-N 的假设:1)蛋白质聚集,
网络上的清除和传播是病理时空进展的基础;因此 SV 为
某些区域(例如 EC 和 Hipp)可能只是它们在网络拓扑中的位置的结果。
或者,2) SV 由某些神经细胞类型(例如大锥体细胞)的分布和组成决定
AD 病理选择性靶向的神经元)。除了这些相互竞争的假设之外,还有可能性
这两个因素结合在一起:3)病理学受网络传播控制,但其局部性和传播性
参数由某些细胞类型(例如小胶质细胞)介导。不幸的是,迄今为止AD研究还无法
充分测试这些假设或确定这些漏洞中哪些是密切相关的。大部分可用
工作台、动物或人类数据是描述性的,不适合定量模型。
我们建议开发 SV-C 和 SV-N 的网络模型以及正式的统计模型来测试它们。我们
利用我们实验室最近推出的两项支持技术并以此为基础:矩阵求逆
用于创建全脑细胞类型图的子集选择(MISS)算法;和网络扩散模型
(NDM),它在数学上概括了 tau 蛋白沿纤维投影的传输。随着进一步发展
在这些使能技术中,我们将探索小鼠 tau 蛋白病数据和人类 tau 蛋白病数据中的 SV-C 和 SV-N
淀粉样蛋白-PET 扫描。我们还将开发和测试细胞或基因介导网络脆弱性的模型
间接地。如果成功,该项目可能会得出支持或反对每个已确定的 SV 的决定性证据
假设。我们将在未来的工作中探索形态学、分子或电生理学特性
入围的细胞、基因、神经通路和网络中心。我们的方法可以成为一种计算方法
未来假设生成和测试的测试平台,无需昂贵且费力的实验。
所提出的平台技术(MISS 和 NexIS)可能在神经科学领域具有更广泛的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashish Raj其他文献
Ashish Raj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashish Raj', 18)}}的其他基金
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8179703 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8710353 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8309156 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
- 批准号:
8362778 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
- 批准号:
8518485 - 财政年份:2011
- 资助金额:
$ 76.07万 - 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
- 批准号:
8170580 - 财政年份:2010
- 资助金额:
$ 76.07万 - 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
- 批准号:
7957226 - 财政年份:2009
- 资助金额:
$ 76.07万 - 项目类别:
Bayesian Parallel Imaging For Arbitrarily Sampled MR Data Using Edge-Preserving S
使用边缘保留 S 的任意采样 MR 数据的贝叶斯并行成像
- 批准号:
7528771 - 财政年份:2008
- 资助金额:
$ 76.07万 - 项目类别:
Bayesian Parallel Imaging For Arbitrarily Sampled MR Data Using Edge-Preserving S
使用边缘保留 S 的任意采样 MR 数据的贝叶斯并行成像
- 批准号:
7688029 - 财政年份:2008
- 资助金额:
$ 76.07万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 76.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




