Computational dissection of cellular and network vulnerability in Alzheimer's and related dementias

阿尔茨海默病和相关痴呆症细胞和网络脆弱性的计算剖析

基本信息

  • 批准号:
    10900995
  • 负责人:
  • 金额:
    $ 76.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Alzheimer's disease (AD) is a heterogeneous, multifactorial disease that selectively affects certain regions of the brain, e.g. locus coeruleus, entorhinal and hippocampus. Factors underlying this selective vulnerability (SV) remain unclear: Why is progression so stereotyped? Why is pathology seen in specific structures at early stages? What about certain cells makes them susceptible to AD? Current hypotheses have focused on specific features, e.g. cytoarchitecture, cell morphology, neurotransmitter system or molecular composition. The concept of cellular vulnerability (“SV-C”) has gained currency due to advances in single cell sequencing and spatial transcriptomics. Another vulnerability relates to network-based trans-neuronal “prion-like” transmission of pathology, due to which certain circuits, fiber pathways and regions (network hubs) may become selectively vulnerable (“SV-N”). This proposal will quantitatively test and validate hypotheses regarding SV-C and SV-N: 1) Protein aggregation, clearance and transmission on the network underly the spatiotemporal progression of pathology; hence SV of certain regions (e.g. EC and Hipp) may simply be a result of their location within the network topology. Alternatively, 2) SV is dictated by distribution and composition of certain neural cell types (e.g. large pyramidal neurons) that are selectively targeted by AD pathology. Beyond these are competing hypotheses is the possibility that both factors combine: 3) Pathology is governed by network transmission, but whose local and spread parameters are mediated by certain cell types (e.g. microglia). Unfortunately, AD research has so far been unable to fully test between these hypotheses or to identify which of these vulnerabilities are germane. Much of available bench, animal or human data are descriptive and do not accommodate quantitative models. We propose to develop network models for SV-C and SV-N and formal statistical models to test them. We capitalize and build on two enabling technologies that have recently come out of our laboratory: Matrix Inversion and Subset Selection (MISS) algorithm for creating whole-brain cell type maps; and Network Diffusion Model (NDM) which mathematically recapitulates transmission of tau along fiber projections. With further development of these enabling technologies, we will explore SV-C and SV-N in mouse tauopathy data and human tau- and amyloid-PET scans. We will also develop and test models where cells or genes mediate network vulnerability indirectly. If successful this project could lead to conclusive evidence for or against each of the identified SV hypotheses. We will explore in future work the morphological, molecular or electrophysiological properties of short-listed cells, genes, neural pathways and network epicenters. Our approach could become a computational test bed for future hypothesis generation and testing, without requiring expensive and laborious experiments. Proposed platform technologies (MISS and NexIS) may have even broader applicability in neuroscience.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashish Raj其他文献

Ashish Raj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashish Raj', 18)}}的其他基金

A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
  • 批准号:
    8179703
  • 财政年份:
    2011
  • 资助金额:
    $ 76.07万
  • 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
  • 批准号:
    8710353
  • 财政年份:
    2011
  • 资助金额:
    $ 76.07万
  • 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
  • 批准号:
    8309156
  • 财政年份:
    2011
  • 资助金额:
    $ 76.07万
  • 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
  • 批准号:
    8362778
  • 财政年份:
    2011
  • 资助金额:
    $ 76.07万
  • 项目类别:
A Novel Network Diffusion Model for Alzheimer's And Other Neurodegenerative Disea
阿尔茨海默氏症和其他神经退行性疾病的新型网络扩散模型
  • 批准号:
    8518485
  • 财政年份:
    2011
  • 资助金额:
    $ 76.07万
  • 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
  • 批准号:
    8170580
  • 财政年份:
    2010
  • 资助金额:
    $ 76.07万
  • 项目类别:
BAYESIAN RECONSTRUCTION FROM MULTICHANNEL K-SPACE DATA USING GRAPH-CUT ALGORITHM
使用图割算法从多通道 K 空间数据进行贝叶斯重建
  • 批准号:
    7957226
  • 财政年份:
    2009
  • 资助金额:
    $ 76.07万
  • 项目类别:
Bayesian Parallel Imaging For Arbitrarily Sampled MR Data Using Edge-Preserving S
使用边缘保留 S 的任意采样 MR 数据的贝叶斯并行成像
  • 批准号:
    7528771
  • 财政年份:
    2008
  • 资助金额:
    $ 76.07万
  • 项目类别:
Bayesian Parallel Imaging For Arbitrarily Sampled MR Data Using Edge-Preserving S
使用边缘保留 S 的任意采样 MR 数据的贝叶斯并行成像
  • 批准号:
    7688029
  • 财政年份:
    2008
  • 资助金额:
    $ 76.07万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 76.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了