Modulation of pressure overload in chronic animal and in vitro models to elucidate associated effects on hemodynamics and left ventricular plasticity
调节慢性动物和体外模型中的压力超负荷,以阐明对血流动力学和左心室可塑性的相关影响
基本信息
- 批准号:10905164
- 负责人:
- 金额:$ 36.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimal ModelAnimalsAortaAortic Valve StenosisAreaBiological MarkersBiomechanicsBloodCardiacCardiac MyocytesCardiovascular DiseasesCatheterizationChronicClinicClinicalClinical DataCytoskeletonDataDevelopmentDevice or Instrument DevelopmentDevicesDiastolic blood pressureDiseaseDisease modelDisease regressionEchocardiographyEvaluationFeedbackFunctional disorderHeartHeart AtriumHeart failureHumanHypertensionImpairmentImplantIn VitroIndustryInterventionLaboratory ResearchLeftLeft Ventricular RemodelingMagnetic Resonance ImagingMeasurementMechanicsMedicalMethodsModelingMotorPathologicPatientsPersonsPre-Clinical ModelProcessRestrictive CardiomyopathyRisk ReductionRoboticsSecondary toShunt DeviceStroke VolumeSystemTestingTherapeuticTimeTrainingValidationVentricularVentricular RemodelingWorkbiomechanical modelclinically relevantdesigneffective therapyhemodynamicsimplantationin vitro Modelin vivoin vivo Modelinfection riskinsightminimally invasivemortalityoutcome predictionpersonalized medicineporcine modelpressurepreventprotein degradationrobotic systemsensortherapy developmenttool
项目摘要
PROJECT SUMMARY
Cardiac remodeling with loss of left ventricular compliance, impaired filling, and diastolic dysfunction can be
secondary to several conditions, including restrictive cardiomyopathies and pressure overload (i.e., aortic
stenosis or hypertension). Currently, there is an absence of in vitro and in vivo models of loss of LV compliance
and impaired filling representing a major barrier for the development of effective treatments. To date, no validated
in vitro model of the biomechanics of loss of LV compliance exists and animal models are limited by high mortality
rates and an inability to finely control the degree and dynamics of induced pressure overload.
The lack of robust animal models of loss of LV compliance and diastolic dysfunction has hampered the general
understanding of the pathophysiology of these conditions. As a result, there are no available strategies
that treat the underlying biomechanical manifestations of diastolic function. There is a lack of insight
into optimal intervention planning to target and reverse adverse remodeling due to pressure overload.
Through this proposal, we aim to leverage tunable dynamic mechanical implants to create disease models
of loss of LV compliance and to characterize the plasticity of LV remodeling processes from
biomechanical and hemodynamic standpoints, their progression, and potential reversal.
We recently developed a soft robotic aortic sleeve to recapitulate the acute hemodynamics of pressure overload
in a porcine model. Preliminary data show that we can re-create the hemodynamics of pressure overload and
impaired filling in an in vitro model using soft robotic tools. Here, we aim to re-create the chronic biomechanical
and hemodynamic manifestations of loss of LV compliance and impaired filling secondary to pressure
overload with an enhanced system with sensing and control abilities. Specifically, we aim to: (1) Develop
high-fidelity and patient-specific benchtop models of pressure overload loss of ventricular compliance, and
impaired filling using tunable soft robotic tools ; (2) Optimize the aortic sleeve for chronic studies through the
development of a minimally invasive delivery approach, MRI-safe implantable system, and built-in smart sensing
for closed-loop feedback control to re-create patient-specific disease and (3) Develop and evaluate a clinically
relevant chronic large animal model of cardiac remodeling due to pressure overload for time-varied degrees of
pressure overload and assessment of potential for disease regression.
Our proposed work will address limitations with current models to enable studies of the reversibility of the
remodeling processes associated with chronic pressure overload, provide insights into the
pathophysiological mechanisms, guide the optimal type and timing of intervention, and ultimately serve
as a tunable, high-fidelity, and patient-specific platform for training purposes, device development, and
hemodynamic outcome prediction for interventional planning in the clinic.
项目摘要
心脏重构伴左心室顺应性丧失、充盈受损和舒张功能障碍,
继发于几种疾病,包括限制性心肌病和压力超负荷(即,主动脉
狭窄或高血压)。目前,缺乏LV顺应性丧失的体外和体内模型
并且受损的填充是开发有效治疗的主要障碍。迄今为止,
存在LV顺应性丧失的生物力学体外模型,动物模型受到高死亡率的限制
速率和不能精细控制诱导压力过载的程度和动态。
由于缺乏可靠的左心室顺应性丧失和舒张功能障碍的动物模型,
了解这些条件的病理生理学。因此,没有可用的策略
治疗心脏舒张功能的潜在生物力学表现。缺乏洞察力
最佳干预计划,以靶向和逆转由于压力超负荷造成的不良重塑。
通过这个提议,我们的目标是利用可调动态机械植入物来创建疾病模型
的LV顺应性损失,并表征LV重塑过程的可塑性,
生物力学和血液动力学的观点,它们的进展和潜在的逆转。
我们最近开发了一种软机器人主动脉套管,以概括压力超负荷的急性血流动力学
在猪模型中。初步数据显示,我们可以重建压力超负荷的血流动力学,
使用软机器人工具在体外模型中受损的填充。在这里,我们的目标是重建慢性生物力学
以及LV顺应性丧失和继发于压力的充盈受损的血流动力学表现
超负荷与增强系统的传感和控制能力。具体而言,我们的目标是:(1)发展
心室顺应性压力超负荷损失的高保真度和患者特异性台式模型,以及
使用可调软机器人工具进行受损充盈;(2)通过
开发微创输送方法、MRI安全植入式系统和内置智能传感
用于闭环反馈控制以重建患者特异性疾病,以及(3)开发和评估临床
相关的慢性大型动物模型的心脏重塑由于压力超负荷的时间变化程度的
压力超负荷和评估疾病消退的可能性。
我们提出的工作将解决现有模型的局限性,以使研究的可逆性,
与慢性压力超负荷相关的重塑过程,提供了对
病理生理机制,指导干预的最佳类型和时机,并最终服务于
作为可调、高保真和患者特定的平台,用于培训、器械开发和
血流动力学结果预测用于临床介入计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ellen T. Roche其他文献
Pulsatile ECMO: The Future of Mechanical Circulatory Support for Severe Cardiogenic Shock
搏动性体外膜肺氧合:严重心源性休克机械循环支持的未来
- DOI:
10.1016/j.jacbts.2024.02.015 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:7.200
- 作者:
Douglas E. Vincent;Nader Moazami;David D’Alessandro;John F. Fraser;Silver Heinsar;Ellen T. Roche;Brian C. Ayers;Manisha Singh;Nina Langer;Shriprasad R. Deshpande;R.D.B. Jaquiss;Kiyotaka Fukamachi;Seyed Alireza Rabi;Asishana Osho;Taiyo Kuroda;Jamshid H. Karimov;Takuma Miyamoto;Palaniappan Sethu;Guruprasad A. Giridharan;Knut Kvernebo;Jack Copland - 通讯作者:
Jack Copland
Design and Validation of a High-Fidelity Left Atrial Cardiac Simulator for the Study and Advancement of Left Atrial Appendage Occlusion
- DOI:
10.1007/s13239-025-00773-2 - 发表时间:
2025-01-27 - 期刊:
- 影响因子:1.800
- 作者:
Keegan Mendez;Manisha Singh;Patrick Willoughby;Beatrice Ncho;Aileen Liao;Susan Su;Megan Lim;Elijah Lee;Mohamad Alkhouli;Hasan Alarouri;Ellen T. Roche - 通讯作者:
Ellen T. Roche
Implanted device enables responsive bladder control
植入式装置实现响应性膀胱控制
- DOI:
10.1038/d41586-018-07811-1 - 发表时间:
2019-01-02 - 期刊:
- 影响因子:48.500
- 作者:
Ellen T. Roche - 通讯作者:
Ellen T. Roche
AI-powered multimodal modeling of personalized hemodynamics in aortic stenosis
基于人工智能的主动脉瓣狭窄个性化血流动力学多模态建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. Ozturk;Daniel H. Pak;L. Rosalia;Debkalpa Goswami;Mary E. Robakowski;Raymond McKay;Christopher T. Nguyen;James S. Duncan;Ellen T. Roche - 通讯作者:
Ellen T. Roche
Implanted device enables responsive bladder control
植入式装置实现响应性膀胱控制
- DOI:
10.1038/d41586-018-07811-1 - 发表时间:
2019-01-02 - 期刊:
- 影响因子:48.500
- 作者:
Ellen T. Roche - 通讯作者:
Ellen T. Roche
Ellen T. Roche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ellen T. Roche', 18)}}的其他基金
Mechanical Augmentation of the Diaphragm for End-Stage Respiratory Failure
机械增强隔膜治疗终末期呼吸衰竭
- 批准号:
10057755 - 财政年份:2020
- 资助金额:
$ 36.15万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 36.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists