CAMPO Central Laboratory Core

CAMPO 中心实验室核心

基本信息

项目摘要

ABSTRACT FOR THE CENTRAL LABORATORY CORE The California-Mexico-Puerto Rico (CAMPO) Consortium will perform three clinical research studies focused on the prevention of cervical cancer among HIV-positive women in Mexico and Puerto Rico. Study 1 will examine new screening algorithms for cervical high-grade squamous intraepithelial lesions (HSIL) in 4000 HIV-positive women in Mexico and Puerto Rico. Study 2 will evaluate the impact of anogenital probiotic use on anal and cervical microbiota profiles and the relationship to anal and cervical HSIL regression in 600 HIVpositive women and men as well as reduction of high-risk HPV DNA persistence among those with no lesions. Study 3 will evaluate the safety and efficacy of a multivalent replication-defective adenovirus-based therapeutic HPV vaccine to treat cervical and anal HSIL in 300 HIV-positive women and men and identify immune response correlates of HSIL regression. Working with the Data Management and Statistics Core, the Administrative and Coordinating Core, and the Clinical Trials Program, the Central Laboratory Core (CLC) will perform laboratory assays for each of the three studies. The aims of the CLC are: (1) To perform laboratory assays required to achieve the primary aims of the clinical research studies conducted within the CAMPO Consortium’s Clinical Trials Program; (2) To perform laboratory assays for correlative science studies for the CAMPO Consortium; (3) To expand research capacity of consortium partners in Mexico and Puerto Rico through technology transfer; (4) To participate in rigorous quality control programs to ensure the validity of laboratory data; and (5) To support training and career development of early career investigators in laboratorybased research. The CLC will be led by Dr. Alejandro Garcia-Carranca of INCan and co-led by Drs. Filipa Godoy-Vitorino of UPR and Joel Palefsky of UCSF. Similar to the other CAMPO Cores, the CLC will be comprised of a network of investigators and facilities across the three Consortium sites, working closely together but with each site tasked with a role based on their specific expertise. The CLC will have both virtual and physical components, with CLC laboratory facilities at INCan, INSP and the Condesa Clinic in Mexico, the University of Puerto Rico Comprehensive Cancer Center, the University of Puerto Rico Clinical Trials Center, and UCSF. The network will use GlobalTraceTM to track and ship laboratory specimens between the sites. The CLC will form working groups centered on CAMPO’s scientific agenda- HPV diagnostics, microbiome research and cellular immunology- with representation from scientists at each site and will participate on CAMPO Clinical Trials Program study protocol teams. The CLC will perform a rigorous quality assurance program and report results on a regular basis to CAMPO leadership.
中央实验室核心摘要 加州-墨西哥-波多黎各 (CAMPO) 联盟将进行三项临床研究 重点关注墨西哥和波多黎各艾滋病毒呈阳性妇女的宫颈癌预防。研究1 将在 4000 年检查宫颈高级鳞状上皮内病变 (HSIL) 的新筛查算法 墨西哥和波多黎各的艾滋病毒阳性妇女。研究 2 将评估肛门生殖器益生菌的使用对 600 名 HIV 阳性女性和男性的肛门和宫颈微生物群特征及其与肛门和宫颈 HSIL 消退的关系,以及无病变人群中高危 HPV DNA 持久性的降低。 研究 3 将评估基于多价复制缺陷型腺病毒的安全性和有效性 治疗性 HPV 疫苗可治疗 300 名 HIV 阳性女性和男性的宫颈和肛门 HSIL,并确定 免疫反应与 HSIL 消退相关。与数据管理和统计核心合作, 行政和协调核心以及临床试验计划、中央实验室核心 (CLC) 将 对三项研究中的每一项进行实验室测定。 CLC的目标是: (1) 开展实验室 实现 CAMPO 内进行的临床研究的主要目标所需的检测 联盟的临床试验计划; (2) 进行相关科学研究的实验室分析 CAMPO 财团; (3) 扩大墨西哥和波多黎各联合体合作伙伴的研究能力 通过技术转让; (4) 参与严格的质量控制计划,以确保有效性 实验室数据; (5) 支持实验室研究中早期职业研究者的培训和职业发展。 CLC 将由 INCan 的 Alejandro Garcia-Carranca 博士领导,并由 Drs. 共同领导。菲利帕 UPR 的戈多伊-维托里诺和加州大学旧金山分校的乔尔·帕莱夫斯基。与其他 CAMPO 核心类似,CLC 将 由三个联盟站点的调查人员和设施网络组成,密切合作 在一起,但每个站点都根据其特定的专业知识承担一个角色。 CLC 将同时拥有虚拟 和物理组件,在 INCan、INSP 和墨西哥 Condesa 诊所拥有 CLC 实验室设施, 波多黎各大学综合癌症中心、波多黎各大学临床试验中心、 和加州大学旧金山分校。该网络将使用 GlobalTraceTM 在站点之间跟踪和运输实验室标本。这 CLC 将组建以 CAMPO 科学议程为中心的工作组 - HPV 诊断、微生物组研究 和细胞免疫学——每个地点都有科学家代表参加 CAMPO 临床试验计划研究方案团队。 CLC 将执行严格的质量保证计划并 定期向 CAMPO 领导层报告结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teresa Marie Darragh其他文献

Teresa Marie Darragh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teresa Marie Darragh', 18)}}的其他基金

CAMPO Central Laboratory Core
CAMPO 中心实验室核心
  • 批准号:
    10017233
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
CAMPO Central Laboratory Core
CAMPO 中心实验室核心
  • 批准号:
    10469361
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
CAMPO Central Laboratory Core
CAMPO 中心实验室核心
  • 批准号:
    10226227
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了