Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
基本信息
- 批准号:10619943
- 负责人:
- 金额:$ 8.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AIDS preventionAcquired Immunodeficiency SyndromeAddressAdherenceAdoptedAffectAgeAwarenessBehavioralCaringCategoriesCertificationClientClinicalCommunitiesComplexCountryDataData SourcesDevelopmentEffectivenessEpidemicFeedbackFoundationsGoalsGuidelinesHIVHIV InfectionsHIV riskHigh Risk WomanIndividualInfectionInterventionKnowledgeLogicMachine LearningModelingMorbidity - disease rateNational Institute of Mental HealthOutcomePatternPerformancePersonsPlayPoliticsPopulationPopulations at RiskPredictive FactorPrevention ResearchPrevention strategyProviderRecommendationReportingResearchResearch PriorityResource-limited settingRiskRisk BehaviorsRisk FactorsRoleServicesSolidStatistical Data InterpretationSubgroupSystemTechniquesThailandTrainingTranslatingUnited NationsVisualizationclinical predictorsdeep learningdeep learning modeldesigneffective interventionfollow-uphealth disparityhigh riskimprovedinnovationinnovative technologiesmachine learning predictionmembermen who have sex with menmortalitypeerpre-exposure prophylaxispredictive modelingprevention effectivenessprogramsprotective factorsscale upservice deliveryservice providerssocialsociodemographicstherapy developmenttransgender womenuptakeusability
项目摘要
Project Summary/Abstract
HIV remains a major cause of morbidity and mortality despite great progress in HIV prevention and treatment,
especially for key populations (KPs), including men who have sex with men (MSM) and transgender women
(TGW). Pre-exposure prophylaxis (PrEP) has been shown effective in reducing HIV acquisition among different
populations when implemented as part of a combination prevention strategy. However, effectiveness of PrEP
decreases with suboptimal retention and adherence. While many efforts have been made to assess adherence
to PrEP and its associations with HIV prevention effectiveness, more research is needed to deepen our
understanding of individual-level facilitators and barriers to retention in care and adherence to PrEP. Machine
learning holds promise to address those effectively due to its ability to model complex non-linear relationships
among many interacting factors without relying on modeling assumptions, and recent advances in deep
learning have resulted in exciting results for a variety of clinical prediction applications. Although machine
learning has been applied to identify potential PrEP candidates, little is done in exploring machine learning,
especially advanced deep learning techniques, to assess predictive factors for retention in PrEP care and
effective PrEP use.
To close gaps in knowledge, the proposed study aims to explore advanced machine learning techniques to
identify protective and risk factors for retention in PrEP care and effective PrEP use among key populations in
Thailand. We will perform descriptive statistical analysis to characterize PrEP use patterns among MSM and
TGW (Aim 1); develop deep learning models to predict loss to follow up in PrEP care and effective PrEP use
(Aim 2); and design an explainable risk scoring system for identifying clients at high risk of discontinuation and
non-effective PrEP use, with interpretable reasoning logic and associated demographic, behavioral, social, and
clinical factors (Aim 3).
This study is responsive to NIMH’s priority research in HIV prevention and strategic goal 3.2 to develop
strategies for tailoring existing interventions to optimize outcomes. The findings from this study and the
prediction-model based scoring system will inform tailored interventions to optimize PrEP engagement and
facilitate differentiated PrEP service delivery, paving a solid foundation for precise HIV prevention using PrEP
as an effective strategy.
项目总结/摘要
尽管在艾滋病毒预防和治疗方面取得了很大进展,
特别是对关键人群,包括男男性行为者和变性妇女
(TGW)。暴露前预防(PrEP)已被证明有效地减少艾滋病毒感染,
作为综合预防策略的一部分实施时,人群。然而,PrEP的有效性
随着次优的保持和粘附而降低。虽然为评估遵守情况作出了许多努力,
对于PrEP及其与艾滋病毒预防有效性的关联,需要更多的研究来深化我们的研究。
了解个人层面的促进者和障碍,以保持在照顾和坚持PrEP。机器
学习有希望有效地解决这些问题,因为它有能力模拟复杂的非线性关系
在许多相互作用的因素,而不依赖于建模假设,以及最近的进展,在深
学习为各种临床预测应用带来了令人兴奋的结果。尽管机器
学习已经被应用于识别潜在的PrEP候选者,在探索机器学习方面做得很少,
特别是先进的深度学习技术,以评估保留PrEP护理的预测因素,
有效使用PrEP。
为了缩小知识差距,拟议的研究旨在探索先进的机器学习技术,
确定保留PrEP护理的保护性和风险因素,并在关键人群中有效使用PrEP,
泰国我们将进行描述性统计分析,以表征MSM和
TGW(目标1);开发深度学习模型,以预测PrEP护理和有效PrEP使用中的随访损失
(Aim 2);设计一个可解释的风险评分系统,以确定中断服务的高风险客户,
非有效的PrEP使用,具有可解释的推理逻辑和相关的人口统计学,行为,社会和
临床因素(目标3)。
这项研究是响应NIMH在艾滋病毒预防和战略目标3.2方面的优先研究,
调整现有干预措施以优化成果的战略。这项研究的结果和
基于预测模型的评分系统将为定制干预提供信息,以优化PrEP参与,
促进差异化的PrEP服务提供,为使用PrEP精确预防艾滋病毒奠定坚实基础
作为一个有效的战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rena Janamnuaysook其他文献
Rena Janamnuaysook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
- 批准号:
10219039 - 财政年份:2020
- 资助金额:
$ 8.62万 - 项目类别:
RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
- 批准号:
9981476 - 财政年份:2019
- 资助金额:
$ 8.62万 - 项目类别:
IGF::OT::IGF RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
IGF::OT::IGF 针对获得性免疫缺陷综合症分类的研究支持服务
- 批准号:
9364184 - 财政年份:2016
- 资助金额:
$ 8.62万 - 项目类别:
Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) in Saskatchewan- Where are we now and what does the future hold?
萨斯喀彻温省的人类免疫缺陷病毒(HIV)和获得性免疫缺陷综合症(艾滋病)——我们现在在哪里以及未来会怎样?
- 批准号:
236932 - 财政年份:2011
- 资助金额:
$ 8.62万 - 项目类别:
Miscellaneous Programs
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
- 批准号:
3554155 - 财政年份:1991
- 资助金额:
$ 8.62万 - 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
- 批准号:
3554156 - 财政年份:1991
- 资助金额:
$ 8.62万 - 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW
获得性免疫缺陷综合症研究综述
- 批准号:
2063342 - 财政年份:1991
- 资助金额:
$ 8.62万 - 项目类别: