Predicting HIV-1 escape from therapeutics in vitro and in vivo - toward personalizing medicine for people living with HIV
预测 HIV-1 从体外和体内治疗中逃逸 - 为 HIV 感染者提供个性化医疗
基本信息
- 批准号:10619924
- 负责人:
- 金额:$ 57.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-21 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlgorithmsAmino AcidsAnti-Retroviral AgentsAntiviral AgentsAppearanceBloodBlood CellsClinicalClinical TrialsConserved SequenceDrug resistanceExhibitsFoundationsFutureGlycoproteinsGoalsHIVHIV-1HumanIn VitroIndividualInvestigationKnowledgeMeasurableMeasuresMediatingMedicineMethodsModelingMolecular CloningMonitorMorbidity - disease rateMutationNatureOutcomePatient MonitoringPatientsPatternPersonsPlasmaPositioning AttributeProbabilityPropertyProteinsPublishingReducing AgentsResistanceResistance developmentSamplingSiteSourceSpecificityTestingTherapeuticTherapeutic antibodiesTimeVariantViralViral GenomeViral ProteinsViral reservoirVirusVirus LatencyWorkde novo mutationdeep sequencingfitnessin vitro testingin vivomortalitymutantmutation screeningneutralizing antibodyperipheral bloodpersonalized medicinepredictive modelingresistance mutationtargeted treatmenttherapeutic targettherapy resistanttimelinetooltreatment strategyviral fitness
项目摘要
Project summary
Antiretroviral agents reduce morbidity and mortality in HIV-infected individuals; however, mutations in the viral
genome often result in clinical resistance to their effects. Due to the random nature of the mutations, the
emergence of therapy-resistant mutants is mostly considered unpredictable. Consequently, antiviral treatment
strategies are mainly empiric. The premise of this proposal is that the emergence rate of therapy-resistant
mutants in each patient is largely predictable. Our published and preliminary studies suggest that changes in
virus proteins can be accurately forecasted based their sequence properties before initiation of treatment. In
the proposed study, we will use the example of the HIV-1 envelope glycoproteins (Envs). Several broadly
neutralizing antibody (BNAb) therapeutics that target Env have shown great promise in clinical trials. However,
escape from these agents often occurs after treatment, at different rates for different patients. The goal of this
work is to advance our ability to personalize BNAb therapeutics to people living with HIV, by establishing the
tools to determine the likelihood of each patient to develop resistance to each agent.
The central hypothesis of this proposal is that each swarm of HIV-1 that infects a patient has an inherent and
measurable likelihood to escape from each therapeutic. This likelihood is shared by the viruses that circulate in
the blood and the reservoir of latent viruses, which is often the source of resistant mutants that emerge after
therapy.
To test the above hypothesis, we will first determine if the rate of HIV-1 escape from BNAbs is specific for each
swarm of the virus that infects a patient. To this end, we will test in vitro the escape of strains from different
patients that were isolated from samples collected at different time points. We will then test the ability of our
models to forecast the rate and site of escape for each strain. Based on these studies, our models will be
refined and applied to determine their ability to forecast resistance rates in four clinical trials of BNAbs in
humans. Next, we will determine whether the appearance of resistant mutants is driven by their fitness (i.e.,
higher likelihood to appear before treatment) or by their resistance (i.e., higher replicative capacity after
treatment). Such knowledge is critical for our ability to use patient samples before treatment, which inform of
the viral fitness profiles, to predict escape from the treatment. We will then examine whether the fitness profile
of BNAb escape sites is a persistent property of each virus swarm by measuring the changes that occur over
time in patients. Finally, we will induce outgrowth of latent HIV-1 from peripheral blood cells and compare their
fitness profiles at BNAb escape sites with those of viruses that circulate in the blood.
The models to be developed have the potential to make important contributions to the treatment of patients by
antiviral agents. They will lay the foundations for personalized antiviral medicine that is based on the likelihood
of each virus swarm in a patient to develop resistance to each agent.
项目摘要
抗逆转录病毒药物降低了HIV感染者的发病率和死亡率;然而,
基因组中的突变通常导致对其作用的临床抗性。由于突变的随机性,
治疗抗性突变体的出现通常被认为是不可预测的。因此,抗病毒治疗
策略主要是经验性的。这一建议的前提是,
每个病人体内的突变体在很大程度上是可以预测的。我们发表的和初步的研究表明,
在开始治疗之前,可以基于病毒蛋白的序列特性准确地预测病毒蛋白。在
在本研究中,我们将以HIV-1包膜糖蛋白(Envs)为例。几个广泛
靶向Env的中和抗体(BNAb)治疗剂在临床试验中显示出巨大的前景。然而,在这方面,
这些药物的逃逸通常发生在治疗后,对于不同的患者,逃逸的速率不同。这个目标
我们的工作是提高我们对艾滋病毒感染者进行个性化BNAb治疗的能力,
确定每个患者对每种药物产生耐药性的可能性的工具。
这一建议的中心假设是,感染患者的每一群HIV-1都有一个内在的,
从每种治疗药物中逃脱的可能性。这种可能性是共享的病毒,
血液和潜伏病毒的水库,这往往是耐药突变体的来源,出现后,
疗法
为了检验上述假设,我们将首先确定HIV-1从BNAb逃逸的速率是否对每种BNAb都是特异性的。
感染病人的病毒群。为此,我们将在体外测试不同菌株的逃逸,
从不同时间点采集的样本中分离的患者。然后我们将测试我们的能力
模型来预测每种菌株的逃逸率和逃逸地点。基于这些研究,我们的模型将
改进和应用,以确定他们的能力,预测耐药率在四个临床试验的BNAbs,
人类接下来,我们将确定抗性突变体的出现是否是由它们的适应性驱动的(即,
在治疗前出现的可能性更高)或通过它们的抗性(即,高复制能力
治疗)。这些知识对于我们在治疗前使用患者样本的能力至关重要,
病毒适应度曲线来预测逃避治疗然后,我们将研究健身概况是否
BNAb逃逸位点的数量是每个病毒群的一个持久特性,
病人的时间。最后,我们将从外周血细胞中诱导潜伏的HIV-1的生长,并比较它们的
BNAb逃逸位点的适应性特征与血液中循环的病毒的适应性特征。
待开发的模型有可能通过以下方式对患者的治疗做出重要贡献:
抗病毒剂。他们将为个性化抗病毒药物奠定基础,
每一个病毒群在病人身上产生抗药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hillel Haim其他文献
Hillel Haim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Research Grant