Establishing the feasibility of editing the human gut microbiome
建立编辑人类肠道微生物组的可行性
基本信息
- 批准号:10621772
- 负责人:
- 金额:$ 40.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Actinobacteria classBCAR1 geneBacteriaBacterial GenesBacterial GenomeBacteriophage GeneticsBacteriophagesBiochemicalBiologicalBiomedical ResearchCardiacCell DeathCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexCustomCytoprotectionDNADNA deliveryDevelopment PlansDevicesDigoxinDisciplineDiseaseDissectionEngineeringExposure toFamilyFoundationsGastrointestinal tract structureGene CombinationsGene DeletionGene TargetingGenesGeneticGenomeGenomic DNAGenotypeGnotobioticGoalsGrowthGuide RNAHabitatsHealthHumanHuman MicrobiomeImmune systemIn SituIn VitroIndividualKnowledgeLinkMedicineMetabolic PathwayMetabolismMethodsModelingMolecular GeneticsMusPathogenesisPharmaceutical PreparationsPhysiologyPlanetsPlantsPlasmidsPredispositionPrevalenceProcessReagentRegulationResearchSystemTechnologyTestingTherapeuticToxinValidationVariantbacterial geneticsclinical applicationfitnessgene discoverygut bacteriagut microbiomehigh rewardhigh riskhost microbiomehuman diseasein vivo evaluationinsightinterestknockout genemicrobialmicrobial communitymicrobial hostmicrobiomemicrobiome researchmutantnovelnucleaseprogramsprotein complextechnology developmenttechnology research and developmenttool
项目摘要
PROJECT SUMMARY
Definitive links between the remarkable inter-individual genotypic variation in the human microbiome and
disease are still limited due to the lack of generalizable methods to precisely remove microbial genes from
complex microbial communities in situ. Not only would such a technology help transform the microbiome field
from a descriptive to a mechanistic discipline, but it would also have immediate clinical applications. The goal
of this Focused Technology Research and Development (PAR-19-253) application is to establish a
generalizable toolkit to program the endogenous CRISPR-Cas systems in human gut bacteria to
knockout genes of interest with unprecedented precision. CRISPR-Cas is a bacterial immune system,
composed of RNA-guided nucleases, that protect the cell against bacteriophage and other foreign DNA.
Endogenous CRISPR-Cas systems can be programmed to target their own genomic DNA using custom guide
RNAs (gRNAs) homologous to a gene of interest. As an initial proof-of-principle we will target a single gut
bacterial gene that we discovered is responsible for the inactivation of the cardiac drug digoxin, but if
successful this approach could be readily extended to the numerous bacterial species that have now been
implicated in host physiology and the predisposition to and treatment of disease. We will pursue the following
Specific Aims: (Aim I) the functional validation of a novel CRISPR-Cas system in Eggerthella lenta, a prevalent
gut Actinobacterium with multiple links to metabolism and microbial pathogenesis; (Aim II) the isolation and
rebooting of bacteriophages that infect human gut bacteria; and (Aim III) the engineering of bacteriophage to
program an endogenous gut bacterial CRISPR-Cas system. Our long-term goal is to establish the first
modular tools for engineering the gut microbiome to delete one gene, combinations of genes, or even entire
metabolic pathways. Importantly, by focusing on endogenous CRISPR-Cas systems, we anticipate that along
the way we will uncover basic insights into the diversity, regulation, and function of these systems, with broad
implications for our understanding of the complex interactions between bacteriophages, their bacterial hosts,
and their shared mammalian habitat. While our early results provide support for feasibility, this high-risk, high-
reward technology development plan would have broad implications for the study of microbial communities and
host-microbiome interactions while bringing the promise of microbiome-based therapeutics within reach.
项目摘要
人类微生物组中显着的个体间基因型变异与
由于缺乏可推广的方法来精确地从细菌中去除微生物基因,
复杂的微生物群落。这种技术不仅有助于改变微生物领域,
从一个描述性的学科到一个机械性的学科,但它也会有直接的临床应用。目标
该重点技术研究与开发(PAR-19-253)申请的目的是建立一个
可推广的工具包,用于在人类肠道细菌中编程内源性CRISPR-Cas系统,
以前所未有的精确度敲除目标基因CRISPR-Cas是一种细菌免疫系统,
由RNA引导的核酸酶组成,保护细胞免受噬菌体和其他外来DNA的侵害。
内源性CRISPR-Cas系统可以编程为使用自定义指南靶向其自身的基因组DNA
与感兴趣的基因同源的RNA(gRNA)。作为初步的原理验证,我们将针对单个肠道
我们发现的细菌基因负责心脏药物地高辛的失活,但如果
成功的这种方法可以很容易地扩展到许多细菌物种,
与宿主生理学和疾病的易感性和治疗有关。我们将继续努力
具体目的:(目的I)在迟缓蛋孢(Eggerthella lenta)中对新型CRISPR-Cas系统进行功能验证,
与代谢和微生物发病机制有多重联系的肠道放线菌;(目的II)分离和
感染人类肠道细菌的噬菌体的重新启动;以及(目标III)噬菌体的工程改造,
对内源性肠道细菌CRISPR-Cas系统进行编程。我们的长期目标是建立第一个
用于工程化肠道微生物组的模块化工具,以删除一个基因,基因组合,甚至整个
代谢途径重要的是,通过关注内源性CRISPR-Cas系统,我们预计沿着
我们将揭示这些系统的多样性,监管和功能的基本见解,
对我们理解噬菌体,它们的细菌宿主,
以及它们共同的哺乳动物栖息地虽然我们的早期结果为可行性提供了支持,但这种高风险,高-
奖励技术开发计划将对微生物群落的研究产生广泛的影响,
宿主-微生物组相互作用,同时使基于微生物组的治疗有望实现。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The global anaerobic metabolism regulator fnr is necessary for the degradation of food dyes and drugs by Escherichia coli.
- DOI:10.1128/mbio.01573-23
- 发表时间:2023-10-31
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
Microbiome single cell atlases generated with a commercial instrument.
使用商业仪器生成的微生物组单细胞图谱。
- DOI:10.21203/rs.3.rs-3253785/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Abate,Adam;Li,Xiangpeng;Xu,Linfeng;Demaree,Benjamin;Noecker,Cecilia;Bisanz,Jordan;Weisgerber,Daniel;Modavi,Cyrus;Turnbaugh,Peter
- 通讯作者:Turnbaugh,Peter
Variety of Fruit and Vegetables and Alcohol Intake are Associated with Gut Microbial Species and Gene Abundance in Colorectal Cancer Survivors.
多种果实,蔬菜和酒精摄入量与结直肠癌幸存者中的肠道微生物物种以及基因丰度有关。
- DOI:10.1016/j.ajcnut.2023.07.011
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter James Turnbaugh其他文献
Peter James Turnbaugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter James Turnbaugh', 18)}}的其他基金
Metabolism of cancer chemotherapeutics by the human gut microbiome
人类肠道微生物组对癌症化疗药物的代谢
- 批准号:
10635361 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Host-microbiome interactions shape the metabolic effects of ketogenic diets
宿主-微生物组的相互作用塑造生酮饮食的代谢效应
- 批准号:
10378146 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
Establishing the feasibility of editing the human gut microbiome
建立编辑人类肠道微生物组的可行性
- 批准号:
10447732 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
Host-microbiome interactions shape the metabolic effects of ketogenic diets
宿主-微生物组的相互作用塑造生酮饮食的代谢效应
- 批准号:
10583527 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
Establishing the feasibility of editing the human gut microbiome
建立编辑人类肠道微生物组的可行性
- 批准号:
10222578 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
Host-microbiome interactions shape the metabolic effects of ketogenic diets
宿主-微生物组的相互作用塑造生酮饮食的代谢效应
- 批准号:
10198908 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
9750971 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
10477622 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
10670729 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
10668579 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:














{{item.name}}会员




