Deciphering the Molecular Assembly Mechanism of Giant DNA Viruses
破译巨型DNA病毒的分子组装机制
基本信息
- 批准号:10621855
- 负责人:
- 金额:$ 34.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmic SoftwareArchitectureBindingBiologicalBiological AssayBiophysicsCapsidCapsid ProteinsCellsChemistryCognitiveComputer AnalysisCryoelectron MicroscopyDNA VirusesDiseaseDockingElectronsEquationEvolutionFiberFoundationsFutureGenerationsHumanImageImage AnalysisIndividualLaboratoriesLipidsMapsMathematical Model SimulationMathematicsMethodsMinorModelingMolecularNobel PrizePathway interactionsPatternPhasePlayPneumoniaPositioning AttributeProcessProteinsPublishingRegulationResearchResolutionRoleStructureTechniquesTechnologyThickTrainingViralViral ProteinsVirionVirusVirus AssemblyVirus DiseasesVirus-like particleVisualizationVisualization softwarebiophysical analysisdetectorexperienceexperimental studyfrontierhigh resolution imaginghuman diseasehuman pathogenimage reconstructionimprovedinsightmarinemathematical analysismolecular assembly/self assemblymolecular dynamicsmultimodalitynanonew therapeutic targetnovelpathogenic viruspreventprotein protein interactionrational designreconstructionself assemblysimulationstructural biologytherapeutic developmenttool
项目摘要
Project Summary/Abstract
Over the last two decades, many giant DNA viruses have been discovered, some of which are bigger than a
small cell. How these giant viruses assemble their virion shell from thousands of simple protein building blocks
so precisely is a mystery. However, the sheer size of these viruses poses a significant challenge to currently
available techniques. This project will tackle this challenge by using a marine giant virus Cafeteria
roenbergensis virus (CroV) as a model to decipher the assembly mechanism of giant viruses, and as an
opportunity to develop technology to push the resolution limit of these gigantic structures to the atomic level.
During the last five years, cryo-electron microscopy (cryo-EM) has become an increasingly powerful tool to
study the structures of biological molecules at atomic resolution, earning its developers the 2017 Nobel Prize in
Chemistry. We will collect higher quality images using state-of-the-art cryo-EM equipped with latest new
hardware, such as energy filters, direct electron detectors and phase plates. Using these images together with
new software algorithms, we will determine the structure of giant CroV to high resolution by image analyses
and reconstruction. Structures of individual CroV proteins will also be solved to atomic resolution by cryo-EM
using various methods and docked into the cryo-EM reconstructed maps. The resultant pseudo-atomic
structure will allow characterization of the ultrastructural features and architecture of CroV, building the
essential foundation to unravel the assembly of giant viruses. The structure information will be combined with
classic biophysical, molecular dynamic simulation, mathematical modeling, and computational analyses to
evaluate the novel assembly model of giant viruses. In the new assembly model, the protein shells of giant
viruses are assembled continuously from the 5-fold vertices in an interesting spiral way instead of assembled
from patches in a step-wise fashion previously assumed. Giant virus protein shell is assembled from protein
building block similar to other viruses, including many human pathogens. Some giant viruses have been
associated with human diseases such as pneumonia and cognitive functional change. Understanding these
principles governing the assembly of giant viruses will improve the development of therapeutic agents to inhibit
virus assembly, thus providing a new avenue for preventing and treating viral diseases in general. Elucidation
of the molecular interactions that drive assembly of these giant viruses will also shed light on how to control
protein-protein interactions effectively, facilitating the rational design of virus-like nanoparticles with a wide size
range for biomedical and other nano-applications. Since some giant viruses are bigger than a small cell,
techniques and methods developed in this project will push the limits of structural biology and provide new and
useful tools to study even larger supramolecular assemblies and eventually the whole cell in the future.
项目总结/摘要
在过去的二十年里,人们发现了许多巨大的DNA病毒,其中一些比一个大。
小细胞。这些巨大的病毒如何从数千个简单的蛋白质构建模块组装它们的病毒体外壳
是个谜然而,这些病毒的庞大规模对目前的研究构成了重大挑战。
可用的技术。该项目将通过使用海洋巨型病毒来应对这一挑战。
roenbergensis病毒(CroV)作为一种模型来破译巨型病毒的组装机制,并作为一种
有机会开发技术,将这些巨大结构的分辨率限制推到原子水平。
在过去的五年中,冷冻电子显微镜(cryo-EM)已成为一种越来越强大的工具,
以原子分辨率研究生物分子的结构,为其开发者赢得了2017年诺贝尔奖。
化学.我们将收集更高质量的图像使用国家的最先进的冷冻EM配备最新的新
硬件,例如能量过滤器、直接电子检测器和相位板。将这些图像与
新的软件算法,我们将通过图像分析确定巨大CroV的结构,以获得高分辨率
和重建。单个CroV蛋白的结构也将通过cryo-EM解析到原子分辨率
使用各种方法并对接到冷冻EM重建图中。生成的伪原子
结构将允许表征CroV的超微结构特征和架构,
是解开巨型病毒组装的重要基础结构信息将与
经典的生物物理、分子动态模拟、数学建模和计算分析,
评估巨型病毒的新型组装模型。在新的组装模型中,
病毒从5重顶点开始以一种有趣的螺旋方式连续组装,而不是组装
从补丁在一个逐步的方式先前假设。巨大的病毒蛋白壳由蛋白质组装而成
与其他病毒相似的构建模块,包括许多人类病原体。一些巨型病毒
与人类疾病如肺炎和认知功能改变有关。了解这些
控制巨型病毒组装的原理将促进治疗剂的发展,
病毒组装,从而为预防和治疗病毒性疾病提供了新的途径。阐发
驱动这些巨型病毒组装的分子相互作用也将揭示如何控制
蛋白质-蛋白质相互作用的有效性,促进了具有宽尺寸的病毒样纳米颗粒的合理设计
用于生物医学和其他纳米应用。由于一些巨型病毒比一个小细胞还大,
该项目开发的技术和方法将推动结构生物学的极限,并提供新的,
这是研究更大的超分子组装体并最终在未来研究整个细胞的有用工具。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research.
- DOI:10.3389/fmicb.2023.1284617
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
Phafins Are More Than Phosphoinositide-Binding Proteins.
- DOI:10.3390/ijms24098096
- 发表时间:2023-04-30
- 期刊:
- 影响因子:5.6
- 作者:Tang, Tuoxian;Hasan, Mahmudul;Capelluto, Daniel G. S.
- 通讯作者:Capelluto, Daniel G. S.
The impact of sulfatide loss on the progress of Alzheimer's disease.
硫苷脂丢失对阿尔茨海默病进展的影响。
- DOI:10.1002/ctd2.236
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Finkielstein,CarlaV;Capelluto,DanielGS
- 通讯作者:Capelluto,DanielGS
The Role of Tape Measure Protein in Nucleocytoplasmic Large DNA Virus Capsid Assembly.
卷尺蛋白在核胞质大 DNA 病毒衣壳组装中的作用。
- DOI:10.1089/vim.2020.0038
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Xian,Yuejiao;Avila,Ricardo;Pant,Anil;Yang,Zhilong;Xiao,Chuan
- 通讯作者:Xiao,Chuan
Current capsid assembly models of icosahedral nucleocytoviricota viruses.
- DOI:10.1016/bs.aivir.2020.09.006
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Xian Y;Xiao C
- 通讯作者:Xiao C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chuan Xiao其他文献
Chuan Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chuan Xiao', 18)}}的其他基金
Deciphering the Molecular Assembly Mechanism of Giant DNA Viruses
破译巨型DNA病毒的分子组装机制
- 批准号:
10390036 - 财政年份:2019
- 资助金额:
$ 34.24万 - 项目类别:
Deciphering the Molecular Assembly Mechanism of Giant DNA Viruses
破译巨型DNA病毒的分子组装机制
- 批准号:
10392914 - 财政年份:2019
- 资助金额:
$ 34.24万 - 项目类别:
Dissecting the Molecular Regulatory Mechanism of Mammalian Circadian Core Compone
解析哺乳动物昼夜节律核心成分的分子调节机制
- 批准号:
8667164 - 财政年份:2014
- 资助金额:
$ 34.24万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 34.24万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant














{{item.name}}会员




