Machine Learning Approaches for Behavioral Phenotyping of Humanized Knock-in Models of Alzheimer's Disease
用于阿尔茨海默病人源化敲入模型行为表型的机器学习方法
基本信息
- 批准号:10741685
- 负责人:
- 金额:$ 15.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAD transgenic miceAcuteAddressAffectAge MonthsAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease therapeuticAmyloidAmyloid Beta A4 Precursor ProteinAmyloid beta-ProteinAntibodiesAwardBehaviorBehavior assessmentBehavioralBehavioral AssayBehavioral ResearchBiological MarkersBiotechnologyBody partBrain PathologyClinicalCognitiveCollectionComplexComputer Vision SystemsConsumptionCustomDataDefectDementiaDevelopmentDiagnosisDiseaseDisease ProgressionEarly DiagnosisExploratory BehaviorFemaleGenesGoalsGroomingHealthHeightHistologyHumanImageImpaired cognitionInvestigational TherapiesKnock-inKnock-in MouseLaboratoriesLate Onset Alzheimer DiseaseMachine LearningMethodologyModelingMonitorMonoclonal AntibodiesMotionMovementMusNeurodegenerative DisordersNeurosciencesPathogenesisPharmaceutical PreparationsPhenotypePhysiologicalPre-Clinical ModelPrognostic FactorPublishingReproducibilityResearchSideSpeedSymptomsTestingTherapeuticTherapeutic ResearchTimeTrainingTransgenic MiceTransgenic OrganismsTranslational ResearchUniversitiesValidationapolipoprotein E-4artificial intelligence methodbehavior measurementbehavior testbehavioral impairmentbehavioral phenotypingcohortdata miningdata visualizationdetection methoddetection platformexperiencefamilial Alzheimer diseaseimprovedinnovationmachine learning methodmachine learning pipelinemalemild cognitive impairmentmorris water mazemouse modelneural networknext generationnovelnovel therapeuticsoverexpressionpharmacologicpre-clinicalpre-clinical researchrapid testingrepositoryresearch studysexstemtherapeutic developmenttherapy developmenttooltranslational barriertranslational study
项目摘要
PROJECT SUMMARY
Preclinical efforts to develop treatments for cognitive impairment in Alzheimer’s disease have been hindered by
two barriers: time-consuming behavioral assays that often lack sensitivity, and transgenic (TG) mouse models
with APP overexpression that do not accurately recapitulate human pathogenesis. To overcome the second
barrier, newly-developed humanized App knock-in (App-KI) mouse models express AD-related human genes at
physiological levels. App-KI mice have prominent brain pathology, but inconsistent, milder or absent behavioral
phenotypes in many traditional behavioral tests, including Morris Water maze (Saito et al., 2014). These
limitations of standard behavioral testing, including lack of sensitivity, low throughput, and reproducibility
represent key methodological barriers to proper development of therapeutics in newly developed App-KI mice.
Without a solution to this problem, it is likely that translational and preclinical research will struggle to develop
therapies in models of early pathogenesis or sporadic AD characterized by mild or subtle behavioral phenotype
and lacking overt clinical disease manifestation. To overcome the limits of behavioral testing, we propose to
implement machine-learning (ML) approaches that offer complete, unbiased, and robust behavioral
characterization of even subtle behavioral phenotypes. Specifically, we propose to upgrade and refine our novel
computer vision ML approach (Aim #1), to validate it in App-KI and TG AD mouse models (Aim #2), and to apply
it to mice receiving a newly-developed anti-Aβ antibody to validate our approach in a preclinical setting (Aim #3).
We recently published our first iteration of an ML package that developed the VAME neural network to identify
behavioral motifs. VAME will be further developed to provide rapid testing of large cohorts, unbiased identification
of disease-associated behavioral deficits, and reproducible phenotypes across experimental conditions and
laboratories. Our proposal thereby addresses key limitations of standard behavioral testing and mouse modeling,
vertically advances the methodology of behavioral neuroscience, launches innovative biotechnological
development, and opens new horizons for dementia-related research, including the adaptation of the approaches
to humans. Successful completion of the proposed studies will provide a new preclinical tool for diagnosis,
assessment, and disease monitoring in mouse models of AD. In conclusion, will establish a novel machine-
learning behavioral phenotyping platform with the power to non-invasively identify robust behavioral alterations
in App-KI models of AD, removing a key methodological barrier to the translational study of MCI, and increasing
the value of behavioral research broadly.
This award will critically support the PI to undertake immersive entrepreneurial training experiences at local
universities and at a startup company focused on developing novel therapeutics for neurodegenerative diseases.
项目摘要
临床前的努力,以开发治疗阿尔茨海默氏症的认知障碍,已受到阻碍,
两个障碍:耗时的行为分析(通常缺乏灵敏度)和转基因(TG)小鼠模型
APP过度表达不能准确概括人类发病机制。为了克服第二个
屏障,新开发的人源化App敲入(App-KI)小鼠模型表达AD相关的人类基因,
生理水平。App-KI小鼠具有显著的脑病理学,但不一致、较温和或缺乏行为学,
在许多传统的行为测试中,包括Morris水迷宫(Saito等人,2014年)。这些
标准行为测试的局限性,包括缺乏灵敏度、低通量和可重复性
代表了在新开发的App-KI小鼠中适当开发治疗剂的关键方法学障碍。
如果不解决这个问题,转化和临床前研究很可能难以发展
在早期发病模型或以轻度或轻微行为表型为特征的散发性AD中的治疗
且缺乏明显的临床疾病表现。为了克服行为测试的局限性,我们建议
实现机器学习(ML)方法,提供完整、无偏见和强大的行为
即使是细微的行为表型的表征。具体来说,我们建议升级和完善我们的小说
计算机视觉ML方法(目标#1),在App-KI和TG AD小鼠模型中验证(目标#2),并应用
将其用于接受新开发的抗A β抗体的小鼠,以在临床前环境中验证我们的方法(目标#3)。
我们最近发布了ML包的第一次迭代,该包开发了VAME神经网络来识别
行为动机将进一步开发VAME,以提供对大型队列的快速检测,
疾病相关的行为缺陷,以及在实验条件下可重复的表型,
laboratories.因此,我们的建议解决了标准行为测试和小鼠建模的关键限制,
垂直推进行为神经科学的方法,推出创新的生物技术
发展,并为痴呆症相关研究开辟新视野,包括方法的适应
对人类拟议研究的成功完成将为诊断提供新的临床前工具,
评估和疾病监测。总之,将建立一个新的机器-
学习行为表型分析平台,具有非侵入性识别稳健行为改变的能力
在AD的App-KI模型中,消除了MCI转化研究的关键方法学障碍,
行为研究的价值
该奖项将大力支持PI在当地进行沉浸式创业培训体验
大学和一家专注于开发神经退行性疾病新型疗法的初创公司。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Regina Miller其他文献
Stephanie Regina Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ENVIRONMENTAL ENRICHMENT EFFECTS IN AD TRANSGENIC MICE
AD 转基因小鼠的环境富集效应
- 批准号:
6932636 - 财政年份:2005
- 资助金额:
$ 15.06万 - 项目类别:
ENVIRONMENTAL ENRICHMENT EFFECTS IN AD TRANSGENIC MICE
AD 转基因小鼠的环境富集效应
- 批准号:
7309938 - 财政年份:
- 资助金额:
$ 15.06万 - 项目类别: