Biocarpet: The Next Generation Endovascular Device for Peripheral Arterial Disease

Biocarpet:治疗外周动脉疾病的下一代血管内装置

基本信息

项目摘要

Project Summary It is estimated that over 10 million Americans have peripheral arterial disease (PAD). Left untreated PAD will lead to critical limb ischemia and eventual amputation. PAD symptoms often progress requiring one of the following interventions: balloon angioplasty, stent placement, or vascular bypass. Balloon angioplasty and drug eluting stents radially expand stenosed arteries -- a mechanical insult that damages the vessel leading to restenosis and device failure. This failure mechanism leads to a two-year patency rate of 50% and 60% for angioplasty and drug eluting balloons, respectively. 80 to 90% of patients with advanced PAD present with disease in the femoral and popliteal arteries – where tortuosity and complex joint motion is common. These complex bending forces exacerbate treatment challenges and often lead to stent fracture and increased rates of restenosis. The gold standard treatment of PAD is surgical bypass, which itself displays a primary 2 year patency rate of up to 67% for anatomically complex lesions. The unacceptable failure rates of all PAD treatments clearly demonstrate the critical need for a more durable and successful treatment of PAD. Our team has developed the Biocarpet – a fully biodegradable electrospun sheet that takes the shape of the patient’s vascular anatomy following deployment. Our approach not only imposes significantly reduces vascular wall stress during deployment, but also allows the Biocarpet’s zero stress state to be that of the host artery – which is often tortuous or anatomically complex. This is hypothesized to further reduce vascular injury in response to intraluminal pulsation and joint flexion – a common occurrence in the stenotic vessels of the lower limb peripheral vasculature. The overall goal of this Catalyze proposal is to finalize the Biocarpet design and prototype, establish its deliverability and improved performance in-vivo, and make significant progress toward the clinical translation of our technology. This goal will be met by completing the following objectives. The R61 phase of this proposal has three Objectives: R61.1: Finalize the Biocarpet design, fabricate a device prototype, and quantify its in-vitro deliverability and performance; R61.2: Establish the in-vivo deliverability of our device into the bending joint of an atherosclerotic pig; R61.3: Generate a Regulatory Path document that details the specific milestones that are required prior to a future FDA submission. The R33 phase of this proposal has two objectives: R33.1: Demonstrate the improved in-vivo performance of our device compared to a gold standard endovascular stent; R33.2: Generate a formal Business Model document detailing timeline to market, required future investment, market analysis, and financial risk profile. Funding of this Catalyze award further integrate our research team with the procured Accelerator Partners (including both regulatory and business expertise) to accelerate our team’s goal of clinical translating this novel platform technology.
项目摘要 据估计,超过1000万美国人患有外围动脉疾病(PAD)。保持未经处理 PAD将导致临界肢体缺血和最终截肢。 PAD症状通常需要一个 以下干预措施:气囊血管成形术,支架放置或血管旁路。气球血管成形术和 药物洗脱支架从根本上扩展了动脉 - 一种机械损伤,损害了导致的血管 再狭窄和装置故障。这种故障机制导致两年的通畅率为50%和60% 血管成形术和药物洗脱气球。 80%至90%的晚期患者出现 股骨和pop虫动脉中的疾病 - 曲折和复杂的关节运动很常见。这些 复杂的弯曲力加剧治疗挑战,通常会导致支架断裂和增加速率 再狭窄。 PAD的黄金标准处理是手术旁路,它本身显示了主要的2年 解剖复杂病变的通畅率高达67%。所有PAD的不可接受的故障率 治疗清楚地表明了对PAD的更耐用和成功处理的至关重要的需求。 我们的团队已经开发了生物棕榈 - 一种完全可生物降解的电纺纸 部署后患者的血管解剖结构。我们的方法不仅大大减少了 部署过程中的血管壁应力,但也允许生物核心的零压力状态为宿主的压力状态 动脉 - 通常是曲折或解剖学复杂的。假设这是为了进一步减少血管损伤 响应内部脉动和关节屈曲 - 在狭窄视频中的常见 下肢外周脉管系统。 该催化建议的总体目标是最终确定生物棕榈设计和原型 它的可递送性和在体内的性能提高,并在临床上取得了重大进展 我们技术的翻译。通过完成以下目标,将实现此目标。 R61阶段 该提案有三个目标:R61.1:最终确定生物棕榈设计,制造设备原型,然后 量化其体外交付和性能; R61.2:建立我们设备的体内交付 动脉粥样硬化猪的弯曲关节; R61.3:生成一个监管路径文档,详细介绍 未来FDA提交之前需要的特定里程碑。该提议的R33阶段有两个 目标:R33.1:与黄金标准相比,我们的设备的体内性能提高了 血管内支架; R33.2:生成一个正式的业务模型文档,详细详细介绍了市场的时间表 未来的投资,市场分析和财务风险状况。该催化奖的资金进一步整合 我们与采购的加速器合作伙伴(包括监管和业务专业知识)的研究团队 加快我们团队临床翻译这种新型平台技术的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Pieter Vande Geest其他文献

Jonathan Pieter Vande Geest的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Pieter Vande Geest', 18)}}的其他基金

Preclinical Assessment of a Compliance Matched Biopolymer Vascular Graft
顺应性匹配的生物聚合物血管移植物的临床前评估
  • 批准号:
    10366911
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
Preclinical Assessment of a Compliance Matched Biopolymer Vascular Graft
顺应性匹配的生物聚合物血管移植物的临床前评估
  • 批准号:
    10540762
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
Preclinical Assessment of a Compliance Matched Biopolymer Vascular Graft
顺应性匹配的生物聚合物血管移植物的临床前评估
  • 批准号:
    10731964
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peripapillary Sclera in Populations at High Risk for Primary Open Angle Glaucoma
原发性开角型青光眼高危人群筛板和视乳头周围巩膜的细胞外基质组织和生物力学
  • 批准号:
    9293031
  • 财政年份:
    2016
  • 资助金额:
    $ 39.75万
  • 项目类别:
Development of a Microstructurally Inspired and Compliance Matched Tissue Enginee
开发受微观结构启发且顺应性匹配的组织工程
  • 批准号:
    8444206
  • 财政年份:
    2013
  • 资助金额:
    $ 39.75万
  • 项目类别:
Development of a Microstructurally Inspired and Compliance Matched Tissue Enginee
开发受微观结构启发且顺应性匹配的组织工程
  • 批准号:
    8603278
  • 财政年份:
    2013
  • 资助金额:
    $ 39.75万
  • 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
  • 批准号:
    8188325
  • 财政年份:
    2011
  • 资助金额:
    $ 39.75万
  • 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
  • 批准号:
    8703108
  • 财政年份:
    2011
  • 资助金额:
    $ 39.75万
  • 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
  • 批准号:
    8304189
  • 财政年份:
    2011
  • 资助金额:
    $ 39.75万
  • 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
  • 批准号:
    8509699
  • 财政年份:
    2011
  • 资助金额:
    $ 39.75万
  • 项目类别:

相似海外基金

Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
  • 批准号:
    10649994
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10754152
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
A novel electric current-based treatment system for chronic wound biofilm infections
一种新型的基于电流的慢性伤口生物膜感染治疗系统
  • 批准号:
    10720191
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
Sensory Augmentation, Restoration, and Modulation Using a Spinal Neuroprosthesis
使用脊柱神经假体进行感觉增强、恢复和调节
  • 批准号:
    10687329
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
Strain-Programmed Bioadhesive Patch for Enhanced Diabetic Wound Healing
用于增强糖尿病伤口愈合的应变程序生物粘附贴片
  • 批准号:
    10818916
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了