Improved Brain-Computer Interface Decoding for Activities of Daily Life
改进日常生活活动的脑机接口解码
基本信息
- 批准号:10744925
- 负责人:
- 金额:$ 69.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Action ResearchActivities of Daily LivingAddressAlgorithmsArtificial ArmBackBehaviorBehavioralBiomimeticsBrainClinical TrialsComplexDataDevelopmentDigit structureDistalEatingFeedbackFundingGenerationsGoalsHandHand functionsHomeHumanImpairmentImplantIndividualLearningLifeLimb structureLiquid substanceLocationMechanicsModelingMonkeysMotionMotorMotor CortexMotor outputMovementMulti-Institutional Clinical TrialNeurologicNeuronsOutputParalysedParticipantPatternPerformancePersonsPhysicsPopulationPositioning AttributeProceduresProsthesisRoboticsRoleShapesSignal TransductionSiteSomatosensory CortexSourceStructureTactileTestingTimeTrainingUpper ExtremityUser-Computer Interfacearmarm functionarm movementbrain computer interfacecookingdesignexperimental studyfallsflexibilitygraspimprovedinsightkinematicsmicrostimulationmotor controlneuralneuron componentnext generationnovelperformance testsprototypesensorvirtualvirtual realityvirtual reality environmentvirtual reality simulation
项目摘要
ABSTRACT
The development of brain-controlled prosthetic arms promises to provide independence to people with paralysis.
To date, however, Brain-Computer Interfaces (BCIs) have not conferred on users the ability to use the prosthesis
to carry out activities of daily living (ADLs) with adequate reliability and flexibility. This inability can be traced
back to at least three shortcomings. First, while we naturally closely coordinate arm and hand movements,
current BCI users reach and grasp sequentially, in large part due to the way BCI decoders are built. Second,
existing decoders use the component of the neuronal activity that has a direct and immediate relationship with
motor output to infer motor intent. While this approach has been successful even for control of an
anthropomorphic robotic arm and hand, it does not harness all the behaviorally relevant M1 activity. Indeed,
activity that has a direct and immediate relationship with behavior – the so-called output-potent activity –
constitutes only a small fraction of the total M1 activity. The remaining neuronal activity – so-called output-null
activity – plays a role in generating the output-potent activity but is overlooked by standard decoding approaches.
Third, while robotic hands have become increasingly sophisticated and anthropomorphic, no existing prototype
approaches the functionality of a human hand, either in terms of actuation or sensorization.
The goal of the proposed project is to address each of the aforementioned limitations by building more
biomimetic decoders – that allow for coordinated arm and hand movements and more effectively harness M1
activity – and by challenging them in a flexible and realistic virtual reality platform. First, we will build decoding
approaches that support coordinated movements of the arm and hand. To this end, we will train decoders while
subjects reach to and grasp objects that differ in shape, size, and orientation, forcing significant hand orienting
and pre-shaping during reaching. Second, we will further elaborate these decoders so that they leverage both
output-potent and output-null activity. To this end, we will leverage recent insights into M1 dynamics and their
relationship to behavior to build decoders that harness all the behaviorally relevant activity in M1. Finally, we will
test novel decoders in VR by having subjects perform standard tests of arm and hand function as well as tasks
that mimic complex activities of daily living and develop performance metrics for these VR scenarios. We are
well positioned to achieve these objectives as part of a multi-site clinical trial on BCI with 3 subjects implanted
across two locations, with existing funding for two more subjects.
摘要
脑控假肢的发展有望为瘫痪患者提供独立性。
然而,到目前为止,脑机接口(BCI)还没有赋予用户使用假肢的能力
以足够的可靠性和灵活性进行日常生活活动(ADL)。这种无能可以追溯到
至少有三个缺点。首先,当我们自然地密切协调手臂和手的运动时,
当前的BCI用户按顺序到达和掌握,这在很大程度上是由于BCI解码器的构建方式。第二、
现有的解码器使用神经元活动的分量
以推断运动意图。虽然这种方法即使对于控制
虽然它具有拟人化的机器人手臂和手,但它并没有利用所有与行为相关的M1活动。的确,
与行为有直接和直接关系的活动--所谓的产出--
仅占总M1活性的一小部分。剩下的神经元活动--所谓的零输出
活动-在产生输出有效活动中起作用,但被标准解码方法忽略。
第三,虽然机器人手已经变得越来越复杂和拟人化,但没有现有的原型
接近人手的功能,无论是在致动或传感方面。
拟议项目的目标是通过建立更多的
仿生解码器-允许协调手臂和手部运动,更有效地驾驭M1
活动-并在灵活而逼真的虚拟现实平台中挑战他们。首先,我们将建立解码
支持手臂和手的协调运动的方法。为此,我们将训练解码器,
受试者接触并抓住形状、大小和方向不同的物体,迫使明显的手定向
以及在到达过程中的预成形。其次,我们将进一步详细说明这些解码器,以便它们利用这两个
有效输出和无效输出活动。为此,我们将利用最近对M1动态及其
与行为的关系来构建解码器,利用M1中所有与行为相关的活动。最后我们将
通过让受试者执行手臂和手部功能以及任务的标准测试,
模拟日常生活的复杂活动,并为这些VR场景开发性能指标。我们
作为植入3名受试者的BCI多中心临床试验的一部分,
在两个地点,现有的资金用于另外两个主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John E Downey其他文献
John E Downey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 69.04万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Standard Grant
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Operating Grants
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 69.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 69.04万 - 项目类别:
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 69.04万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 69.04万 - 项目类别: