Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution

新型双阶段抗疟药:机器学习预测、验证和进化

基本信息

项目摘要

PROJECT SUMMARY Specifically, this proposal focuses on novel new small molecules that inhibit both the blood and liver stages of malaria infection. The causative pathogen – Plasmodium spp. – was responsible for 241,000,000 cases that resulted in 627,000 deaths in 2020. Plasmodium spp. drug-resistant infections leave few good choices for physicians and put at risk the productivity and the lives of those infected. A clear case has been made for new drugs to treat these infections through the discovery and development of novel therapeutic strategies. These strategies would optimally be dual stage, targeting the blood stage for treatment and the liver stage for prophylaxis. The innovative strategy in this proposal builds on the technology of machine learning models for the prediction of novel dual-stage antimalarial small molecules with significant potential as drug discovery entities. Such a computational approach to seed the discovery of small molecule malaria parasite inhibitors with dual- stage efficacy has only been reported by us in 2022. The approach begins with preliminary data around two novel antimalarial small molecules with demonstrated in vitro efficacy versus both blood and liver stages of Plasmodium spp. infection and a lack of significant cytotoxicity to cultured liver cells. These molecules were derived from a set of hits discovered with a random forest model trained with high-throughput screening data. The molecules are representative of novel chemotypes for dual-stage antimalarials and, thus, offer a high probability of modulating new targets that are critical throughout the parasite’s lifecycle. This initial machine learning effort will be significantly expanded with a range of model types and a different and larger commercial library to predict a set of new hit compounds. Two validated hits, meeting in vitro efficacy and cytotoxicity criteria and maintaining wild type in vitro efficacy versus a set of drug-resistant parasite strains, will be profiled for key molecular properties such as mouse liver microsomal stability, aqueous solubility, and mouse pharmacokinetic profile. These data along with the existing in vitro efficacy and cytotoxicity evaluations will guide the evolution of each hit with a goal of preparing one or more analogs with a composite profile to enable downstream in vivo efficacy evaluation in infection models. A novel combination of medicinal chemistry and machine learning will be leveraged to afford such molecules.
项目总结 具体地说,这项建议侧重于抑制血液和肝脏的新的新小分子 疟疾感染的各个阶段。病原菌--疟原虫。-负责241,000,000起案件 这导致2020年有62.7万人死亡。疟原虫属耐药感染给患者留下的好选择不多 并将感染者的生产力和生命置于危险之中。已经有了明确的理由支持新的 通过发现和开发新的治疗策略来治疗这些感染的药物。这些 策略最好是两个阶段,以血液阶段为治疗目标,以肝脏阶段为目标 预防措施。 本提案中的创新战略建立在机器学习模型技术的基础上, 具有重大药物发现实体潜力的新型两阶段抗疟疾小分子的预测。 这种计算方法为发现小分子疟疾寄生虫抑制剂提供了双重- 我们在2022年才报告了阶段疗效。该方法首先从两部小说的初步数据开始 体外抗疟小分子对血期和肝期疟原虫的疗效 SPP.对培养的肝细胞没有明显的细胞毒性。这些分子是从一种 使用高通量筛选数据训练的随机森林模型发现的一组命中。这些分子 是两阶段抗疟疾药物的新型化学类型的代表,因此提供了很高的可能性 调节在寄生虫整个生命周期中至关重要的新靶点。这一最初的机器学习努力将 通过一系列模型类型和不同且更大的商业库显著扩展,以预测 一系列新的热门化合物。 两种有效的HIT,符合体外疗效和细胞毒性标准,并在体外保持野生型 对一组抗药性寄生虫菌株的疗效将被描述为关键的分子特性,如小鼠 肝微粒体稳定性、水溶度和小鼠药代动力学特征。这些数据以及 现有的体外疗效和细胞毒性评估将指导每一种HIT的进化,目标是准备 一种或多种具有复合配置文件的类似物,以实现体内感染疗效的下游评估 模特们。药物化学和机器学习的新组合将被用来负担这样的费用 分子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily R Derbyshire其他文献

Molecular steps in sGC activation
  • DOI:
    10.1186/1471-2210-7-s1-s27
  • 发表时间:
    2007-07-25
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Elizabeth M Boon;Stephen PL Cary;Shirley H Huang;Jonathan A Winger;Emily R Derbyshire;Mark S Price;William K Erbil;Michael A Marletta
  • 通讯作者:
    Michael A Marletta
A molecular view of the regulation of sGC activity
  • DOI:
    10.1186/1471-2210-9-s1-s27
  • 发表时间:
    2009-08-11
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Michael A Marletta;Emily R Derbyshire;W Kaya Erbil;Nathaniel B Fernhoff;John Kuriyan;Charles Olea;Mark S Price;David E Wemmer
  • 通讯作者:
    David E Wemmer

Emily R Derbyshire的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily R Derbyshire', 18)}}的其他基金

Chemical Biology Strategies to Resolve Plasmodium Heat Shock Protein Function
解决疟原虫热休克蛋白功能的化学生物学策略
  • 批准号:
    10734886
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
  • 批准号:
    10735130
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
Enabling Host Processes for Defense Against Liver Stage Malaria Infection
启用主机进程防御肝期疟疾感染
  • 批准号:
    9348873
  • 财政年份:
    2017
  • 资助金额:
    $ 24.64万
  • 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
  • 批准号:
    8627185
  • 财政年份:
    2013
  • 资助金额:
    $ 24.64万
  • 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
  • 批准号:
    8443165
  • 财政年份:
    2013
  • 资助金额:
    $ 24.64万
  • 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
  • 批准号:
    9100871
  • 财政年份:
    2013
  • 资助金额:
    $ 24.64万
  • 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
  • 批准号:
    8878462
  • 财政年份:
    2013
  • 资助金额:
    $ 24.64万
  • 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
  • 批准号:
    7909506
  • 财政年份:
    2010
  • 资助金额:
    $ 24.64万
  • 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
  • 批准号:
    8465300
  • 财政年份:
    2010
  • 资助金额:
    $ 24.64万
  • 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
  • 批准号:
    8045421
  • 财政年份:
    2010
  • 资助金额:
    $ 24.64万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 24.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了