Developing 3D brain circuits on-a-chip for in vitro study of human cortico-striatal circuitry development and connectivity
开发片上 3D 大脑回路,用于人类皮质纹状体回路发育和连接的体外研究
基本信息
- 批准号:10741965
- 负责人:
- 金额:$ 25.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAxonBehaviorBenchmarkingBiological AssayBiologyBrainCellsCoculture TechniquesCognitionCorpus striatum structureCouplingDevelopmentDiseaseElectrodesElectrophysiology (science)EtiologyFoundationsFunctional disorderFutureGlutamatesGrantHumanIn VitroMicroelectrodesMicrofluidic MicrochipsMicrofluidicsModelingMonitorNeural InterconnectionNeurodevelopmental DisorderNeuronal DifferentiationNeuronsOrganoidsPathogenesisPathologicPathway interactionsPatientsPhysiologicalPhysiologyResolutionRodentSchizophreniaStructureSurfaceSystembrain circuitrybrain dysfunctionfunctional outcomeshuman pluripotent stem cellimprintin vivoinnovationinsightmicrophysiology systemneuralneural circuitneural networknew therapeutic targetnovelnovel strategiesnovel therapeuticspharmacologicreconstitutionreconstructionresponsetransmission processtwo-dimensional
项目摘要
Neural circuits are the underlying functional units of the human brain. By receiving glutamatergic (Glut)
inputs through cortico-striatal pathway, the striatum acts as an integrative hub to coordinate multiple higher-order
behavior and cognition. Dysfunction of the striatum and the associated neural circuitry development have been
implicated in the pathogenesis of multiple neurodevelopmental disorders e.g., schizophrenia. Despite the
functional importance, studies of such long-distance human cortical-subcortical network development and
connectivity have been significantly hindered due to lack of suitable microphysiological platforms. A major
unresolved hurdle in current human cells-based assays is that in vitro cultures weakly recapitulate the key biology
of neural microphysiological system, especially the long-distance projections in both two and three dimensions
(2D/3D). In this grant, we propose to fill this critical gap, by reconstructing human cortico-striatal circuits on-a-
chip to recapitulate and monitor long-range brain circuitry development and connectivity in vitro, in response to
PAR-20-082. We will reconstruct human cortico-striatal circuits by developing a novel 2D/3D microfluidic
microelectrode arrays (MEA) chip together with the co-culture of human pluripotent stem cells (hPSCs)-derived
region-specific neurons or brain organoids. Coupling with MEA allows us to monitor brain circuit dynamics in a
high-throughput manner. Further, our innovative implementation of microfluidic channels and arrays of surface
and probe electrodes in 3D configurations enables resemblance of 3D brain circuits for high-order brain function
studies. We hypothesize that human cortico-striatal circuits on a microfluidic-MEA chip can reconstitute striatal
synchrony, a key striatal physiology which is absent in unconnected striatal neurons, and the reconstructed 3D
neural circuits between cortical and striatal organoids can resemble high-order brain function e.g., brain waves
like in vivo. We will reconstruct human cortico-striatal circuits by using our novel microfluidic MEA chip together
with the co-culture of hPSCs-derived cortical and striatal neurons in Aim 1. We will monitor axon projections and
neural network dynamics during circuitry development and determine whether striatal synchrony is driven by
cortical Glut inputs by pharmacological manipulation of Glut transmission. In Aim 2, we will develop a 3D
microfluidic MEA chip with microchannels and microelectrodes integrated in 3D configurations. We will
reconstruct 3D cortico-striatal circuits by assembling cortical and striatal organoids on-a-chip. We expect 3D
brain circuits on-a-chip approach will resemble brain waves (a.k.a. large-scale neural oscillation) like human
brains. This proposal presents a novel approach to reconstitute well-defined long-range human circuit in vitro.
Our model can be benchmarked against existing human and rodent in vitro brain circuitry systems and exceed
state-of-the-art by coupling high-throughput functional readout and reconstructing 3D brain circuits on-a-chip.
The future pathological studies by using patients-derived brain circuitry on-a-chip models (e.g., using SCZ
patient-derived hPSCs) could potentially illustrate the circuit-based etiology and provide novel therapeutic target.
神经回路是人脑的基本功能单元。通过接受谷氨酸(Glut)
在通过皮质-纹状体通路的输入中,纹状体充当协调多个高阶输入的整合枢纽。
行为和认知。纹状体功能障碍和相关的神经回路发育已被发现
涉及多种神经发育障碍的发病机制,精神分裂症尽管
功能的重要性,研究这种长距离的人类皮层-皮层下网络的发展,
由于缺乏合适的微生理学平台,连通性受到显著阻碍。一个主要
目前基于人类细胞的测定中未解决的障碍是体外培养物弱地再现了关键的生物学特性,
神经微生理系统,特别是二维和三维的长距离投射
(2D/3D)。在这项研究中,我们建议填补这一关键空白,通过重建人类皮质-纹状体回路,
一种芯片,用于概括和监测体外长距离大脑回路的发育和连接,
PAR-20-082我们将通过开发一种新的2D/3D微流体来重建人类皮质-纹状体回路,
微电极阵列(MEA)芯片与人多能干细胞(hPSC)的共培养物一起
区域特异性神经元或脑类器官。与MEA的耦合使我们能够在一个环境中监测脑回路动态
高通量的方式。此外,我们的微流体通道和表面阵列的创新实现
3D配置中的探针电极使得3D脑回路类似于高阶脑功能
问题研究我们假设微流体MEA芯片上的人类皮质-纹状体回路可以重建纹状体
同步,一个关键的纹状体生理,这是缺乏在未连接的纹状体神经元,和重建的3D
皮质和纹状体类器官之间的神经回路可以类似于高级脑功能(例如,脑电波
就像在体内一样我们将使用我们的新型微流控MEA芯片一起重建人类皮质-纹状体回路
与Aim 1中hPSC衍生的皮质和纹状体神经元的共培养。我们将监测轴突投射,
神经网络动态电路发展过程中,并确定是否驱动纹状体同步
通过药理学操纵Glut传递的皮质Glut输入。在目标2中,我们将开发一个3D
微流控MEA芯片与微通道和微电极集成在3D配置。我们将
通过在芯片上组装皮质和纹状体类器官来重建3D皮质-纹状体回路。我们期待3D
芯片上的脑电路方法将类似于脑电波(也称为脑电波)。大规模神经振荡)类人
大脑该方案提出了一种新的方法来重建明确的远程人体电路在体外。
我们的模型可以对现有的人类和啮齿动物体外脑电路系统进行基准测试,
通过在芯片上耦合高通量功能读出和重建3D脑回路,
未来的病理学研究,通过使用患者衍生的脑电路芯片模型(例如,使用SCZ
患者来源的hPSC)可能潜在地阐明基于回路的病因学并提供新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziyuan Guo其他文献
Ziyuan Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziyuan Guo', 18)}}的其他基金
A new human iPSC model of ALS: natural modifiers protecting FUS mutation carriers from the disease
一种新的 ALS 人类 iPSC 模型:保护 FUS 突变携带者免受疾病侵害的天然修饰剂
- 批准号:
10227376 - 财政年份:2021
- 资助金额:
$ 25.14万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 25.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows