Predicting fatal and non-fatal overdose in Los Angeles County with Rapid Overdose Surveillance Dashboard to target street-based addiction treatment and harm reduction services
利用快速过量用药监测仪表板预测洛杉矶县的致命和非致命用药过量,以针对街头成瘾治疗和减少伤害服务
基本信息
- 批准号:10741388
- 负责人:
- 金额:$ 21.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-29 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:Alaska NativeAlgorithmsAmerican IndiansAsianAwardBehavioralBlack PopulationsBlack raceBupropionCaliforniaCaringCessation of lifeChronic DiseaseClassificationCocaineCodeCollaborationsCountyDataData AnalysesData SourcesDevelopmentDoctor of PhilosophyElectronic Health RecordEmergency department visitEpidemiologistEthnic OriginExclusionFentanylFundingGeneral PopulationGoalsHarm ReductionHealthHealth ServicesHealthcareHelping to End Addiction Long-termHispanicHospitalizationIllicit DrugsIndividualInternational Classification of Disease CodesInternational Classification of DiseasesInterventionK-Series Research Career ProgramsLatinoLatinxLicensingLos AngelesMachine LearningMedicalMedicineMental Health ServicesMentorsMentorshipMethadoneMethamphetamineMirtazapineNaltrexoneNational Institute of Drug AbuseNative AmericansNative-BornNatural Language ProcessingNot Hispanic or LatinoOpioidOutcomeOverdosePatient CarePatientsPersonsPharmaceutical PreparationsPhysiciansPopulationPreventionProviderPsychologistPublic HealthRaceReceiver Operating CharacteristicsRecordsResearchResearch DesignResearch PersonnelResearch Project GrantsScienceScientistServicesStimulantSubstance Use DisorderSystemTextTimeTrainingTranslatingUnited States National Institutes of HealthUnited States Public Health ServiceWritingaddictionanalogcare systemscontingency managementdashboarddesignethnic diversityexamination questionsexperiencehealth assessmenthealth care modelhealth care servicehealth care service utilizationhealth differenceimprovedmortalityneighborhood disadvantageopioid useopioid use disorderoutreachoverdose deathparent grantpatient populationpolysubstance useprimary care visitracial diversityskillsstimulant usestimulant use disordersubstance use treatmentsynthetic opioidtool
项目摘要
PROJECT SUMMARY
This Diversity Supplement is designed to support and enhance the diversity of the health-related research
workforce through the training of Sarah Clingan, PhD., a Latinx/Native American Addiction Researcher. The
supplement is complementary to the parent grant, an R01 on overdose and opioid use disorder in Los Angeles
County, funded under the National Institutes of Health's Helping End Addiction Long-Term Initiative. Dr.
Clingan has a strong research background in addiction sciences that will continue to develop under the
mentorship of Dr. Chelsea Shover (primary mentor, epidemiologist, and MPI of parent grant), Dr. Steve
Shoptaw (senior co-mentor) a licensed psychologist and Director of the Center for Behavioral and Addiction
Medicine at UCLA, and Dr. David Goodman-Meza (co-mentor, physician-scientist, and MPI of parent grant).
These three mentors have a strong record of collaboration and a track record of mentoring underrepresented
scholars. Through this supplement, Dr. Clingan will obtain training and mentorship across three training
objectives. The first will focus on gaining skills and experience using natural language processing (NLP) and
machine learning approaches. She will additionally gain skills in designing research projects using real-world
data to study polysubstance use. Her third and final training objective is professional development activities
that will culminate in her writing a K01 career development award, using the findings generated by the Diversity
Supplement as pilot data. The research component of the Diversity Supplement will use electronic health
record (EHR) data collected via the parent grant to identify people with polysubstance use and create models
of healthcare utilization among those who co-use opioids and stimulants. Specifically, the aims of the Diversity
Supplement research plan are to: 1) develop an algorithm to identify people with polysubstance use (opioids
and stimulants) in EHR data; 2) Characterize healthcare utilization among those who co-use opioids and
stimulants using NLP-based approaches. These results will improve our understanding of polysubstance use in
a county with a very high burden of overdose involving fentanyl and stimulants, and contribute to our
understanding of the gaps in healthcare services for this population in Los Angeles County. The Diversity
Supplement findings will also provide preliminary data for Dr. Clingan's planned K01 application. This award
will provide Dr. Clingan with the support, mentorship, and protected time that will enhance her training at UCLA
and facilitate her transition to become an independent researcher.
项目总结
本多样性补编旨在支持和加强与健康有关的研究的多样性
通过对拉丁裔/美洲原住民成瘾研究人员Sarah Clingan博士的培训。这个
补充是对父母拨款的补充,这是关于洛杉矶过量和阿片类药物使用障碍的R01
由国家卫生研究院的帮助戒瘾长期倡议资助的一个县。Dr。
Clingan在成瘾科学方面有很强的研究背景,将在
切尔西·肖弗博士(首席导师、流行病学家、家长格兰特MPI)的指导,史蒂夫博士
Shoptaw(高级联合导师),有执照的心理学家,行为和成瘾中心主任
加州大学洛杉矶分校的医学博士和大卫·古德曼-梅扎博士(共同导师、内科医生兼科学家和家长奖助金的MPI)。
这三位导师有很强的合作记录,也有指导人数不足的记录
学者。通过这一补充,Clingan博士将在三个培训中获得培训和指导
目标。第一个重点是使用自然语言处理(NLP)和
机器学习方法。此外,她还将获得使用现实世界设计研究项目的技能
用于研究多物质使用的数据。她的第三个也是最后一个培训目标是职业发展活动。
这将在她撰写K01职业发展奖时达到顶峰,使用多样性研究所产生的调查结果
作为试点数据补充。多样性补编的研究部分将使用电子保健。
记录(EHR)通过家长拨款收集的数据,以识别使用多种物质的人并创建模型
联合使用阿片类药物和兴奋剂的人的医疗保健利用情况。具体地说,多样性的目标
补充研究计划是:1)开发一种识别使用多种物质(阿片类药物)的人的算法
和兴奋剂);2)表征联合使用阿片类药物的人的医疗保健利用情况
使用基于NLP的方法的兴奋剂。这些结果将提高我们对多物质使用的理解
一个涉及芬太尼和兴奋剂的过量负担非常高的县,并为我们的
了解洛杉矶县这一人群在医疗服务方面的差距。多样性
补充发现还将为Clingan博士计划的K01应用提供初步数据。本奖项
将为Clingan博士提供支持、指导和受保护的时间,这将加强她在加州大学洛杉矶分校的培训
并为她过渡成为一名独立研究员提供便利。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Goodman其他文献
David Goodman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Goodman', 18)}}的其他基金
Predicting fatal and non-fatal overdose in Los Angeles County with Rapid Overdose Surveillance Dashboard to target street-based addiction treatment and harm reduction services
利用快速过量用药监测仪表板预测洛杉矶县的致命和非致命用药过量,以针对街头成瘾治疗和减少伤害服务
- 批准号:
10589518 - 财政年份:2022
- 资助金额:
$ 21.42万 - 项目类别:
Using data science to measure the impact of opioid agonist therapy in patients admitted with Staphylococcus aureus bloodstream infections
使用数据科学测量阿片类激动剂治疗对金黄色葡萄球菌血流感染患者的影响
- 批准号:
10408760 - 财政年份:2019
- 资助金额:
$ 21.42万 - 项目类别:
Using data science to measure the impact of opioid agonist therapy in patients admitted with Staphylococcus aureus bloodstream infections
使用数据科学测量阿片类激动剂治疗对金黄色葡萄球菌血流感染患者的影响
- 批准号:
10164748 - 财政年份:2019
- 资助金额:
$ 21.42万 - 项目类别:
Using data science to measure the impact of opioid agonist therapy in patients admitted with Staphylococcus aureus bloodstream infections
使用数据科学测量阿片类激动剂治疗对金黄色葡萄球菌血流感染患者的影响
- 批准号:
10618404 - 财政年份:2019
- 资助金额:
$ 21.42万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Research Grant