New quantitative approaches to interpret variant pathogenicity

解释变异致病性的新定量方法

基本信息

  • 批准号:
    10744328
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-17 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Project Summary Insufficient knowledge and throughput to interpret pathogenicity of genetic variants identified by next generation sequencing (NGS) is a major bottleneck for genomic medicine implementation. The American College of Medical Genetics and Genomics and Association for Molecular Pathology (ACMG/AMP) guidelines identify high-confidence pathogenic and likely pathogenic variants but are limited in scalability. Many variants are classified as variants of uncertain significance by the ACMG/AMP guidelines without an indication of which of these variants are more or less likely to be pathogenic, leading to inappropriate medical treatment. Hence, I propose to develop standardized quantitative approaches to improve our ability to interpret genomic variations accurately at high-throughput. In-silico tools are commonly used to assign variant pathogenicity based on conservation, but their predictive accuracy is limited. The current methods have not been calibrated across genes, and the same pathogenicity score does not infer the same likelihood of pathogenicity across different genes. In this proposal, 1) I aim to recalibrate the pathogenicity scores incorporating gene-specific features making the pathogenicity scores more comparable across genes, and improve the accuracy of pathogenicity predictions using advanced deep neural network models and functional data from saturation mutagenesis studies. 2) I aim to quantify the ACMG/AMP variant classification and provide probability of variant pathogenicity for clinically relevant genes using advanced supervised learning and leveraging a large case- control cohort. The improved computational predictions (Aim 1) will refine variant prioritization for downstream analyses and strengthen the computational evidence used in the ACMG/AMP guidelines. The estimated probability of variant pathogenicity based on ACMG/AMP guideline (Aim 2) will improve communication between laboratories, health care providers and patients about genetic test results.
项目摘要 知识和通量不足以解释next鉴定的遗传变异的致病性 世代测序(NGS)是基因组医学实施的主要瓶颈。美国 医学遗传学和基因组学学院和分子病理学协会(ACMG/AMP)指南 鉴定高置信度致病性和可能致病性变体,但可扩展性有限。许多变体 被ACMG/AMP指南归类为不确定意义的变体, 这些变异或多或少可能是致病的,导致不适当的医疗。所以我 我建议开发标准化的定量方法,以提高我们解释基因组变异的能力 准确地以高通量进行。计算机模拟工具通常用于基于以下因素分配变异致病性: 保守,但其预测精度有限。目前的方法还没有经过校准, 基因,并且相同的致病性得分并不意味着不同的致病性的可能性相同。 基因.在这个提议中,1)我的目标是重新校准致病性分数,将基因特异性特征纳入其中 使致病性评分在基因间更具可比性,并提高致病性的准确性 使用先进的深度神经网络模型和饱和诱变的功能数据进行预测 问题研究2)我的目标是量化ACMG/AMP变异分类,并提供变异概率 使用先进的监督学习和利用大型案例对临床相关基因的致病性- 对照组。改进的计算预测(目标1)将细化下游的变体优先级 分析和加强ACMG/AMP指南中使用的计算证据。估计 基于ACMG/AMP指南(目标2)的变异致病性概率将改善沟通 实验室、卫生保健提供者和患者之间就基因检测结果进行沟通。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Fan其他文献

Xiao Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Fan', 18)}}的其他基金

New quantitative approaches to interpret variant pathogenicity
解释变异致病性的新定量方法
  • 批准号:
    10301093
  • 财政年份:
    2021
  • 资助金额:
    $ 24.9万
  • 项目类别:
New quantitative approaches to interpret variant pathogenicity
解释变异致病性的新定量方法
  • 批准号:
    10490431
  • 财政年份:
    2021
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
  • 批准号:
    EP/Y034694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
  • 批准号:
    2349580
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
  • 批准号:
    2415059
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了