Cellular and Molecular Mechanisms of Cochlear Innervation
耳蜗神经支配的细胞和分子机制
基本信息
- 批准号:10744569
- 负责人:
- 金额:$ 58.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcousticsAction PotentialsAcuteAdultAffectAgeAgingAreaAttenuatedAuditoryAuditory Brainstem ResponsesAuditory systemBinding ProteinsBiologicalBrainCellsCochleaDataDevelopmentElectrophysiology (science)Eph Family ReceptorsExperimental DesignsFamilyFrequenciesGenesGrantHair CellsHearingHistologyHumanImageInner Hair CellsInner Supporting CellLaboratoriesLinkMapsMeasuresMesenchymeModelingMolecularMolecular ProfilingMuscle fasciculationNervous SystemNeuronal DifferentiationNeuronsPathway interactionsPatternPeriodicalsPeripheralPhysiologicalPhysiologyPlayPotassium ChannelProcessPropertyProsthesisProteinsRegulationRegulatory ElementResearchRoleSemaphorinsSequence AlignmentSignal PathwaySignal TransductionSomatomedinsSupporting CellSusceptibility GeneSynapsesTestingTimeTissue Culture TechniquesTraumaWorkauditory pathwayautism spectrum disorderaxon guidancecochlear developmentdeafnessexperimental studyhearing impairmentinhibitormembermutantnerve supplyneuralneuron developmentneuron lossneuronal cell bodyneuronal excitabilityneuronal guidanceneuronal survivalnoise exposurepostnatalrepairedsingle-cell RNA sequencingspiral ganglionsynaptogenesistranscription factor
项目摘要
PROJECT SUMMARY
Synaptic connections between spiral ganglion neurons (SGNs) and hair cells in the cochlea are critical
for hearing and lost in many forms of hearing impairment. These synapses form prior to hearing onset and are
activated by supporting cell-induced, intrinsically generated activity that is prominent within the developing
cochlea. This periodic and spontaneous synaptic activity initiates SGN burst firing, which promotes SGN survival,
SGN maturation, and development of frequency tuning in central auditory circuits. Our prior studies revealed an
unexpected role for otic mesenchyme cells (OMCs) in establishing appropriate SGN-hair cell connectivity
through activation of POU3F4, a transcription factor associated with X-linked deafness. POU3F4 is expressed
only by OMCs in the cochlea. We found that, in OMCs adjacent to developing SGNs, POU3F4 upregulates Eph
receptor-A4 (EphA4) to promote SGN fasciculation. Subsequently, we discovered that POU3F4 is also
necessary for SGN survival. Recent data from Ca2+ imaging and single cell RNA sequencing (scRNAseq)
experiments support a model whereby OMCs promote SGN development by regulating spontaneous activity
through POU3F4, insulin-like growth factor (IGF) and Semaphorin (SEMA) signaling. Here, we will test the
hypothesis that expression of these factors by OMCs promotes both prehearing spontaneous activity and the
establishment of hair cell–SGN synaptic connections to enable hearing. This hypothesis will be tested in three
aims. In Aim 1, we will determine the role of POU3F4 and OMCs in generating prehearing spontaneous activity.
In Aim 2, we will define the mechanisms by which SEMA5A inhibits SGN spontaneous activity. In Aim 3, we will
determine how POU3F4 promotes IHC innervation. These studies will incorporate a range of Ca2+ imaging,
physiology, molecular profiling, and tissue culture techniques.
We and others have documented mechanisms of SGN guidance and survival, but there is still limited
understanding of how SGNs differentiate and form synapses with hair cells. After acoustic overexposure, SGN
cell bodies can survive for long periods of time, but their peripheral processes retract away from the hair cells
without easily reconnecting. At present, how to re-establish these connections is not well understood. Successful
completion of these aims will define how genes expressed by OMCs control the formation of the first synapses
in the auditory pathway. By understanding the mechanisms of cochlear innervation during development, we will
begin to build a “toolbox” that could be used to develop molecular therapies for rewiring the damaged adult
cochlea. This research will also reveal key mechanisms required for the development and regulation of cochlear
spontaneous activity. Since neural activity is recognized as a crucial aspect of circuit formation, it is possible that
activity could be an important consideration in cochlear rewiring.
项目摘要
耳蜗内螺旋神经节神经元(SGN)与毛细胞之间的突触连接至关重要
听力障碍和各种形式的听力损失。这些突触在听力开始之前形成,
通过支持细胞诱导的内在产生的活动激活,该活动在发育中的
耳蜗这种周期性和自发的突触活动启动SGN爆发放电,促进SGN存活,
SGN成熟,以及中枢听觉回路频率调谐的发展。我们之前的研究显示,
耳间充质细胞(OMC)在建立适当SGN-毛细胞连接中的意外作用
通过POU 3F 4的激活,POU 3F 4是一种与X连锁耳聋相关的转录因子。POU 3F 4表达
只有耳蜗中的OMC才能做到。我们发现,在邻近SGN发育的OMC中,POU 3F 4上调Eph
受体-A4(EphA 4)促进SGN成束。随后,我们发现POU 3F 4也是
SGN生存所必需的。Ca 2+成像和单细胞RNA测序(scRNAseq)的最新数据
实验支持OMCs通过调节自发活动促进SGN发展的模型
通过POU 3F 4、胰岛素样生长因子(IGF)和脑信号蛋白(SEMA)信号传导。在这里,我们将测试
假设OMC表达这些因子既促进听前自发活动,
毛细胞-SGN突触连接的建立,使听力。这一假设将在三个
目标。在目标1中,我们将确定POU 3F 4和OMCs在产生听前自发活动中的作用。
在目的2中,我们将定义SEMA 5A抑制SGN自发活动的机制。在目标3中,我们
确定POU 3F 4如何促进IHC神经支配。这些研究将纳入一系列钙离子成像,
生理学、分子图谱和组织培养技术。
我们和其他人已经记录了SGN指导和生存的机制,但仍然有限,
了解SGN如何分化并与毛细胞形成突触。声过度暴露后,SGN
细胞体可以存活很长一段时间,但它们的外周突起会从毛细胞处缩回
而不容易重新连接。目前,如何重新建立这些联系还没有很好的理解。成功
这些目标的完成将确定OMC表达的基因如何控制第一个突触的形成
在听觉通路中。通过了解发育过程中耳蜗神经支配的机制,
开始建立一个“工具箱”,可以用来开发分子疗法,重新连接受损的成人
耳蜗这项研究还将揭示耳蜗发育和调节所需的关键机制,
自发活动由于神经活动被认为是回路形成的一个关键方面,
活动可能是耳蜗重新布线的一个重要考虑因素。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas M Coate其他文献
Thomas M Coate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas M Coate', 18)}}的其他基金
Cellular and Molecular Mechanisms of Cochlear Innervation
耳蜗神经支配的细胞和分子机制
- 批准号:
10194452 - 财政年份:2018
- 资助金额:
$ 58.74万 - 项目类别:
Cellular and Molecular Mechanisms of Cochlear Innervation
耳蜗神经支配的细胞和分子机制
- 批准号:
10430051 - 财政年份:2018
- 资助金额:
$ 58.74万 - 项目类别:
Wiring of Spiral Ganglion Neurons and Auditory Hair Cells by Secreted Semaphorins
分泌信号蛋白对螺旋神经节神经元和听毛细胞的连接
- 批准号:
9304158 - 财政年份:2014
- 资助金额:
$ 58.74万 - 项目类别:
Wiring of Spiral Ganglion Neurons and Auditory Hair Cells by Secreted Semaphorins
分泌信号蛋白对螺旋神经节神经元和听毛细胞的连接
- 批准号:
8870860 - 财政年份:2014
- 资助金额:
$ 58.74万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 58.74万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 58.74万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 58.74万 - 项目类别:
Standard Grant