Deconstructing brainstem circuits for visceral senses
解构内脏感觉的脑干回路
基本信息
- 批准号:10591627
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-02-14
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimalsAnorexiaAtlasesBehaviorBehavior ControlBehavioralBrainBrain StemBrain regionCalciumCardiovascular PhysiologyCardiovascular systemCategoriesCell NucleusCodeComplexCuesDataDesire for foodDiabetes MellitusDigestive PhysiologyDiseaseEatingEating DisordersEfferent PathwaysEmeticsEnergy MetabolismFeedbackFeeding behaviorsFoodGastrointestinal tract structureGeneticGoalsHealthHomeostasisHormonesHungerHypothalamic structureImageIndividualInflammatoryIngestionIntestinesIrritantsLabelLogicManuscriptsMapsMediatingMetabolicMetabolic ControlMetabolismMonitorMotor NeuronsMusNatureNauseaNervous SystemNeuroanatomyNeuronsNucleus solitariusNutrientObesityOrganPathway interactionsPatternPeer ReviewPerceptionPhysiologicalPhysiologyPlayPopulationPostdoctoral FellowProcessPropertyResearchRespiratory SystemRespiratory physiologyRoleSatiationScientistSensorySignal TransductionSortingSpecificityStimulusStomachSystemTaste aversionTherapeuticTimeToxinVagus nerve structureViralVisceralVisceral painWater consumptionWorkcell typeconditioned place preferencedetection platformexperimental studyfeedingflyergastrointestinalgastrointestinal systemgenetic approachimaging platformin vivoin vivo calcium imaginginsightmechanical signalnerve supplyneuralneural circuitneuroregulationneurotransmissionnoveloptogeneticsparaventricular nucleusrespiratoryresponsesegregationsensory systemtooltransmission processtwo-photonvirus genetics
项目摘要
PROJECT SUMMARY/ABSTRACT
The ability to tightly control metabolic homeostasis is critical for animal survival. The internal sensory nervous
system monitors the status of organs, providing feedback signals that enable the brain to maintain homeostasis
by executing behavioral and physiological responses. For example, the system detects and encodes
gastrointestinal cues signaling the quality and quantity of food ingested during a meal to control feeding behavior,
digestive physiology, and whole-body metabolism. Dysregulation of internal sensory systems that monitor the
digestive system can lead to various diseases, including obesity, diabetes, and anorexia. The internal sensory
gateway in the brainstem, the nucleus of the solitary tract (NTS), receives inputs from the gastrointestinal,
respiratory, and cardiovascular systems through the vagus nerve and other neural/humoral pathways. In turn,
the NTS projects to diverse higher-order brain regions to generate our perceptions of satiety, hunger, nausea,
and visceral pain. Despite the importance of internal sensory systems in health and disease, how neural circuits
process visceral signals to regulate behavior and physiology is vastly understudied. Disentangling the highly
interconnected brainstem neurons requires a comprehensive analysis of the anatomy, sensory coding, and
function of the NTS network to understand the circuit components that mediate individual visceral senses. In Dr.
Stephen Liberles’ lab, my initial postdoctoral work deciphered the sensory representations of bodily cues in the
NTS. In this proposal, the goal is to determine how internal sensory information, after being processed in the
NTS, is sorted into downstream brain regions to control specific aspects of behavior and physiology. First, the
neuroanatomical logic by which NTS projections are organized will be investigated (Aim 1). Second, visceral
cues transmitted by each projection will be determined using in vivo calcium imaging of NTS projection neurons
(Aim 2). Last, the functional roles of NTS projections in controlling behavior and autonomic physiology will be
established, with the focus on pathways that mediate physiological satiation (Aim 3). Research in this proposal
will be conducted under the guidance of Dr. Stephen Liberles, who pioneered the study of viscerosensory
neurons in the vagus nerve using genetic approaches, Dr. Clifford Saper, a leading scientist in the neuroanatomy
of the viscerosensory system, and Drs. Bradford Lowell and Eleftheria Maratos-Flier, experts in neural control of
appetite and energy metabolism. This proposal will establish a functional atlas of NTS projection neurons in
visceral senses, providing insights into our understanding of the neuro-circuitry underlying metabolic
homeostasis and strategies to develop targeted treatments for metabolic and viscerosensory disorders.
项目总结/摘要
严格控制代谢稳态的能力对于动物的生存至关重要。内感觉神经
一个系统监测器官的状态,提供反馈信号,使大脑能够保持体内平衡
通过执行行为和生理反应。例如,系统检测并编码
胃肠道信号发出在进餐期间摄取的食物的质量和数量以控制进食行为,
消化生理学和全身代谢。内部感觉系统的失调,
消化系统疾病会导致各种疾病,包括肥胖、糖尿病和厌食症。内部感觉
脑干中的网关,孤束核(NTS),接收来自胃肠的输入,
呼吸和心血管系统通过迷走神经和其他神经/体液途径。反过来,
NTS投射到不同的高级大脑区域,以产生我们对饱腹感、饥饿感、恶心感
和内脏疼痛尽管内部感觉系统在健康和疾病中的重要性,
处理内脏信号来调节行为和生理的研究还远远不够。解开高度
相互连接的脑干神经元需要全面分析解剖,感觉编码,
NTS网络的功能,以了解介导个人内脏感觉的电路组件。博士米切尔
在斯蒂芬·利伯勒斯的实验室里,我最初的博士后工作是破译身体暗示的感官表征,
NTS。在这个提议中,目标是确定内部感觉信息在大脑中被处理后,
NTS被分为下游大脑区域,以控制行为和生理的特定方面。一是
将研究NTS投射组织的神经解剖学逻辑(目标1)。第二,内脏
将使用NTS投射神经元的体内钙成像来确定由每个投射传递的线索
(Aim 2)。最后,将讨论NTS投射在控制行为和自主生理中的功能作用。
建立,重点是介导生理饱足的途径(目的3)。本提案中的研究
将在斯蒂芬·利伯勒斯博士的指导下进行,他是内脏感觉研究的先驱。
神经解剖学领域的领先科学家Clifford Saper博士说,
和布拉德福德洛厄尔博士和Eleftheria Maratos-Flier,神经控制的专家,
食欲和能量代谢。本研究将建立一个NTS投射神经元的功能图谱,
内脏感觉,为我们理解代谢背后的神经回路提供了见解
稳态和策略,以开发针对代谢和内脏感觉障碍的靶向治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Ran其他文献
Chen Ran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 12.58万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 12.58万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 12.58万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 12.58万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Training Grant