Harnessing multivariate patient- and population-level disease trajectories to predict major clinical events in scleroderma
利用多变量患者和人群水平的疾病轨迹来预测硬皮病的主要临床事件
基本信息
- 批准号:10592246
- 负责人:
- 金额:$ 16.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAutoantibodiesAutoantigensAutoimmunityBackBiologic CharacteristicBiological MarkersBlood VesselsCancer ModelCharacteristicsClinicalClinical DataComplexComputing MethodologiesDataData AnalysesDecision MakingDiagnosisDiagnosticDiffusionDiseaseDisease ProgressionEventFoundationsFutureGenesGrowth and Development functionHeterogeneityImmune responseIndividualKidneyKnowledgeLearningLogistic RegressionsMalignant NeoplasmsMedicalMedicineMethodologyMethodsMidcareer Investigator Award in Patient-Oriented ResearchModelingMonitorMutationOutcomePathogenesisPathway interactionsPatient riskPatientsPhenotypePopulationPrecision Medicine InitiativePredictive AnalyticsProbabilityPrognosisProviderPulmonary Heart DiseaseRheumatismRheumatologyRiskRisk EstimateRisk FactorsScholarshipSclerodermaSkinSomatic MutationSubgroupSymptomsSystemSystemic SclerodermaSystolic PressureTestingTherapeuticTimeUniversitiesUpdateVentricularVisualizationVisualization softwareVital capacityanti-cancerbiomarker discoverybody systemcancer riskcandidate identificationcandidate markercarcinogenesiscareercareer developmentclinical careclinical decision-makingclinical practiceclinically relevantcohortcomplex datacross reactivitycytokinedata visualizationimplementation scienceimprovedindividual patientinnovationinsightmedical schoolsmid-career facultymultidimensional datanovelnovel markerpatient oriented researchpatient subsetsprecision medicineprediction algorithmprimary outcomeprogramsprogression riskresponserisk predictionrisk stratificationscreeningskillsskin disordertooltreatment responsetreatment strategytrend
项目摘要
PROJECT SUMMARY / ABSTRACT
This is a proposal for a K24 Midcareer Investigator Award in Patient-Oriented Research for Ami A. Shah, MD,
MHS of Johns Hopkins University School of Medicine. Dr. Shah is an Associate Professor of Medicine in the
Division of Rheumatology, Deputy Director for the Rheumatology Precision Medicine Centers of Excellence
clinical programs, and Co-Director of the Johns Hopkins Scleroderma Center. Dr. Shah has spent the majority
of her career and scholarship focused on patient-oriented research in systemic sclerosis (scleroderma) and in
investigating the relationship between cancer and autoimmunity. Scleroderma is a complex, multisystem
rheumatic disease that manifests very differently among patients with the same diagnosis. There is heterogeneity
in symptoms, trajectory of disease, timing of events, and response to therapy. While many risk factors have been
identified for specific scleroderma complications at the population level, these have not been easily translatable
to clinical practice at the patient level. This has been due to many factors including difficulty (i) capturing
multivariate patient-specific disease trajectories, (ii) modeling the complex interplay between organ system
parameters over time, and (iii) utilizing knowledge gained from trajectories of other patients who share
scleroderma subgroup characteristics. In this proposal, the applicant seeks to harness rich clinical data through
the Johns Hopkins precision medicine platform and develop novel computational methods to generate
personalized risk estimates of major clinical events in scleroderma. She will utilize an innovative strategy to apply
and test these new insights in a clinical setting. By embedding estimated trajectories and probabilities of major
events into a patient level data visualization tool that updates in “real-time,” she will test whether these new
discoveries can influence provider risk estimation and future diagnostic and therapeutic decision-making. Lastly,
she will utilize phenotypic trajectories as a platform to identify candidate biomarkers at baseline that associate
with long-term disease progression in scleroderma, as this may provide insight into patient subgroups who could
benefit from intensive screening and treatment strategies. These aims will serve as an outstanding vehicle for
career development and growth for Dr. Shah’s mentees, opening new fields of inquiry and developing novel
precision medicine approaches in scleroderma.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ami Aalok Shah其他文献
Ami Aalok Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ami Aalok Shah', 18)}}的其他基金
Harnessing multivariate patient- and population-level disease trajectories to predict major clinical events in scleroderma
利用多变量患者和人群水平的疾病轨迹来预测硬皮病的主要临床事件
- 批准号:
10351424 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Cancer, Autoantigens, and Scleroderma Investigating the Connection
癌症、自身抗原和硬皮病之间的联系研究
- 批准号:
8699677 - 财政年份:2012
- 资助金额:
$ 16.94万 - 项目类别:
Cancer, Autoantigens, and Scleroderma Investigating the Connection
癌症、自身抗原和硬皮病之间的联系研究
- 批准号:
8382970 - 财政年份:2012
- 资助金额:
$ 16.94万 - 项目类别:
Cancer, Autoantigens, and Scleroderma Investigating the Connection
癌症、自身抗原和硬皮病之间的联系研究
- 批准号:
8517011 - 财政年份:2012
- 资助金额:
$ 16.94万 - 项目类别:
Cancer, Autoantigens, and Scleroderma Investigating the Connection
癌症、自身抗原和硬皮病之间的联系研究
- 批准号:
8989220 - 财政年份:2012
- 资助金额:
$ 16.94万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant














{{item.name}}会员




