Auditory-based navigation: attentional shifts rapidly modulate hippocampal codes
基于听觉的导航:注意力转移快速调节海马代码
基本信息
- 批准号:10592267
- 负责人:
- 金额:$ 44.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAgingAlzheimer&aposs DiseaseAnimal ExperimentationAnimal ModelAnimalsAttentionAuditoryBehaviorBirdsBrainBrain regionCallithrixCanesCellsChiropteraClinicalCodeCognitiveComplexEcholocationEnvironmentEpilepsyExhibitsFlying body movementFoodFoundationsFunctional disorderFutureHealthHippocampusHomeHumanImpairmentKnowledgeLinkLocationMajor Depressive DisorderMammalsMapsMeasurementMeasuresMedicalMedical DeviceMemoryMental disordersMonitorMultimediaNeurobiologyNeurodegenerative DisordersNeurologic DeficitNeuronsNeurosciencesParkinson DiseasePatient MonitoringPositioning AttributeResearchRewardsRodentSchizophreniaSignal TransductionSpeedStructureSymptomsSystemTechnologyTestingTongueTraining ProgramsTravelWorkactive controlattentional modulationblinddesigndirected attentionexperimental studyflygazeinnovationinsightlight weightmetermillisecondminiaturizeminiaturized devicenervous system disorderneuralnew technologynovelplace fieldssocialsonarsoundspatial memoryway findingwirelesswireless electronic
项目摘要
Project Summary/Abstract
The hippocampus, a brain structure implicated in spatial memory and navigation, show changes in the course
of aging, mental illnesses, neurological disorders, and neurodegenerative diseases. Hippocampal dysfunctions
give rise to diverse clinical symptoms, many of which are tied to impairments in attention and navigation. In
healthy subjects, spatial attention and navigation are tightly linked, because mapping the environment requires
attention to one’s surroundings. Furthermore, while navigating, humans and other animals switch attention
between two complementary coordinate systems: a world-centered reference frame for monitoring absolute
position, and an egocentric reference frame for monitoring relative position with respect to obstacles,
conspecifics, and targets. Little is known about neural dynamics that underlie the rapid shifts in attention that
accompany switches between these reference frames—primarily because reliable indicators of spatial
attention are lacking in standard animal models. The proposed research bridges this gap by exploiting the bat,
a mammal that actively controls its echolocation signals to attend to objects while navigating—similar to many
blind humans who use echoes from self-produced sounds (tongue clicks and cane tapping) to localize objects
and navigate indoors and outdoors. Both bats and human blind echolocators attend to objects using their
sonar, generating an ‘acoustic flashlight’—which provides a direct metric of their moment-to-moment spatial
attention. The proposed experiments will track overt spatial attentional shifts while wirelessly recording
hippocampal neurons to study attentional effects on neural activity. The hypothesis to be tested is that overt
spatial attention rapidly modulates hippocampal spatial codes, by sharpening spatial representation and by
switching hippocampal coding between world-centered and egocentric coordinate frames. To do so, animals
will navigate under two conditions: (1) a stationary and predictable environment where animals direct attention
to fixed objects, and where attentional demands are relatively low; and (2) an unpredictable environment with
moving conspecifics and targets, where attentional demands are high and animals shift attention rapidly to
inspect dynamic objects. These predictable and unpredictable conditions will be studied in two different
experimental setups: a three-dimensional multimedia test room where animals navigate slowly, and a 200-
meter, one-dimensional tunnel where animals travel at high speeds. Because echolocation provides a powerful
explicit indicator of overt spatial attention, this research will yield transformative insights into attention-driven
hippocampal dynamics during naturalistic behavior. The findings will offer new insights into neurological deficits
in spatial navigation and memory, yield technological advances in the design of lightweight, miniaturized
assistive medical devices used to monitor patient health, and will shed new light on the neural basis of auditory
attention and auditory-based navigation in blind humans.
项目摘要/摘要
海马是一种在空间内存和导航中实现的大脑结构,显示了课程的变化
衰老,精神疾病,神经系统疾病和神经退行性疾病。海马功能障碍
引起潜水员的临床症状,其中许多与注意力和导航的损害有关。在
健康的受试者,空间注意力和导航紧密相连,因为映射环境需要
注意周围环境。此外,在航行时,人类和其他动物转移了注意力
在两个完整的坐标系之间:以世界为中心的参考框架,用于监视绝对
位置,以及以障碍相对位置监测相对位置的自我中心参考框架
同种和目标。关于神经动力学知之甚少
涉及这些参考帧之间的切换 - 主要是因为空间的可靠指标
标准动物模型缺乏注意力。拟议的研究通过利用蝙蝠来弥合这一差距
一种积极控制其回声定位信号以在导航时参与对象的哺乳动物 - 类似于许多
盲人使用自我产生的声音(舌头点击和轻拍拐杖)的回声来定位对象
并在室内和室外浏览。蝙蝠和人类盲目的回声器都使用其物体
声纳,产生“声学手电筒”,这是直接的瞬间空间指标
注意力。提出的实验将跟踪明显的空间注意力转移,而无线记录
海马神经元研究对神经元活性的注意影响。要检验的假设是公开
空间注意力通过锐化空间表示和通过
在以世界为中心和以自我为中心的坐标框架之间切换海马编码。为此,动物
将在两个条件下导航:(1)动物直接注意的固定且可预测的环境
固定物体以及注意力需求相对较低; (2)一个不可预测的环境
移动概念和目标,注意力需求很高,动物迅速将注意力转移到
检查动态对象。这些可预测和不可预测的条件将在两个不同的
实验设置:三维多媒体测试室,动物缓慢导航,一个200-
仪表,一维隧道,动物以高速行驶。因为回声定位提供了强大的
明确指标明显的空间注意力,这项研究将产生转化性的见解
自然主义行为期间的海马动力学。这些发现将为神经缺陷提供新的见解
在空间导航和记忆中,在轻巧的设计方面产生技术进步,微型化
用于监测患者健康的辅助医疗设备,并将为听觉的神经基础提供新的启示
注意和基于听觉的盲人导航。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYNTHIA F MOSS其他文献
CYNTHIA F MOSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYNTHIA F MOSS', 18)}}的其他基金
Auditory-based navigation: attentional shifts rapidly modulate hippocampal codes
基于听觉的导航:注意力转移快速调节海马代码
- 批准号:
10184789 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Auditory-based navigation: attentional shifts rapidly modulate hippocampal codes
基于听觉的导航:注意力转移快速调节海马代码
- 批准号:
10352450 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
6931657 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
7238581 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
7069140 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
6887955 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 44.44万 - 项目类别:
Biomechanical mapping of the optic nerve head and peripapillary sclera using high frequency ultrasonic elastography
使用高频超声弹性成像对视神经乳头和视乳头周围巩膜进行生物力学测绘
- 批准号:
10712180 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Early Biomarkers of Alzheimer's Disease: Using Speech Markers to Detect Mild Cognitive Impairment
阿尔茨海默病的早期生物标志物:使用语音标志物检测轻度认知障碍
- 批准号:
10862942 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Quantitative cerebral blood vessel imaging biomarkers for AD and VCID
AD 和 VCID 的定量脑血管成像生物标志物
- 批准号:
10214060 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Vitreo-retinal disease imaging with 3D annular-array ultrasound
使用 3D 环形阵列超声进行玻璃体视网膜疾病成像
- 批准号:
10289702 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别: