Novel Mechanisms Regulating Renal Perfusion and Kidney Redox Biology: Role in Salt Sensitive Hypertension
调节肾灌注和肾脏氧化还原生物学的新机制:在盐敏感性高血压中的作用
基本信息
- 批准号:10591553
- 负责人:
- 金额:$ 15.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-06 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAnimalsAntiinflammatory EffectAntioxidantsArteriesAttenuatedBiological AvailabilityBiologyBlood PressureBlood VesselsCardiovascular systemCellsCerebrovascular CirculationChronic Kidney FailureClinical ResearchCompensationDataDevelopmentDinoprostoneDominant-Negative MutationEpitheliumEquilibriumExcess Dietary SaltExcretory functionExhibitsFunctional disorderFurosemideGenerationsGenesGeneticGoalsGrantHumanHypertensionImpairmentIndividualInterlobular ArteryKidneyLigandsMacrophageMediatingMentored Research Scientist Development AwardMentorsMetabolic syndromeModelingMusMutationMyocardial InfarctionNOS1 geneNOS2A geneNatriuresisNitric OxideNitric Oxide SynthaseNon-Insulin-Dependent Diabetes MellitusOxidation-ReductionOxidative StressPPAR gammaPathway interactionsPerfusionPharmacologyPhysiologyProductionProstaglandin E ReceptorProstaglandinsProtein IsoformsPublishingReactive Oxygen SpeciesReceptor SignalingRenal Blood FlowResearchResistanceRisk FactorsRoleScientistSignal TransductionSodiumSodium ChlorideStrokeSuperoxidesTestingThiazolidinedionesTranscriptional RegulationTubular formationVascular EndotheliumVascular Smooth MuscleVascular resistanceVasodilationWaterabsorptionantagonistarterioleblood glucose regulationblood pressure reductioncofactorearly onsethemodynamicshigh salt dietimprovedinnovationkidney dysfunctionkidney vascular structuremortalitynovelpathogenpharmacologicpreventprogramsreceptorresponsesalt intakesalt sensitive hypertensionselective expressionskillssymportertranscription factor
项目摘要
PROJECT SUMMARY
Individuals with type II diabetes (T2DM) and metabolic syndrome (MS) display decreased activity of peroxisome
proliferator activated receptor gamma (PPARγ) and often develop salt-sensitive hypertension (SS HT). PPARγ
activation by thiazolidinediones (TZDs) lowers blood pressure in T2DM and MS. Moreover, PPARγ impairment
caused by dominant negative mutations (e.g. P467L) that block PPARγ activation by ligands cause severe early
onset HT in humans, while selective expression of these mutations in vascular smooth muscle (VSM)
recapitulates human HT in mice (S-P467L), suggesting impairment of vascular PPARγ is causal. Using S-P467L
mice as a model of vascular PPARγ impairment, I have provided compelling preliminary data supporting an
innovative concept that the detrimental effects of PPARγ impairment in VSM may be mediated by enhanced
PGE2/E-Prostanoid Receptor 3 (EP3) signaling in pre-glomerular resistance vessels (interlobular artery and
afferent arterioles), causing increased renal vascular resistance and blunted renal blood flow during excess salt
loading. The blunted renal perfusion is associated with decreased intrarenal nitric oxide (NO) bioavailability and
increased sodium retention in S-P467L mice fed a 4% high salt diet. We and others have previously published
that vascular PPARγ prevents oxidative stress through transcriptional regulation of antioxidant genes. Loss of
PPARγ-mediated antioxidant responses may decrease NO bioavailability in renal microvessels through an
imbalance between NO and reactive oxygen species such as superoxide. The goal of this K01 award is to
investigate the renal mechanisms of salt sensitivity caused by the impairment of vascular PPARγ. Aim 1 will test
the hypotheses that a) impairment of vascular PPARγ blunts renal blood flow by enhancing PGE2/EP3 signaling
in renal microvessels, and b) pharmacological inhibition of EP3 decreases renal vascular resistance, improves
renal perfusion, and attenuates SS HT during PPARγ impairment. Aim 2 will test the hypotheses that a) impaired
vascular PPARγ results in decreased NOS-mediated NO generation and/or impaired antioxidant defense in the
kidney, and b) intrarenal NO deficiency impairs natriuresis and contributes to SS HT during PPARγ impairment.
Successful completion of the mentored scientist development grant will allow me to acquire necessary skills and
expertise to transition to independence in the academia of hypertension research focusing on renal vascular
biology, redox biology, and tubular physiology.
项目摘要
患有II型糖尿病(T2 DM)和代谢综合征(MS)的个体显示过氧化物酶体活性降低
增殖物激活受体γ(PPARγ),并经常发展成盐敏感性高血压(SS HT)。过氧化物酶体增殖体激活受体γ
噻唑烷二酮类(TZDs)激活可降低T2 DM和MS患者的血压。此外,
由显性失活突变(如P467 L)引起的,通过配体阻断PPARγ活化,
人类出现HT,而这些突变在血管平滑肌(VSM)中选择性表达
在小鼠(S-P467 L)中重现人HT,表明血管PPARγ受损是因果关系。使用S-P467 L
小鼠作为血管PPARγ损伤模型,我提供了令人信服的初步数据,支持
创新的概念,即在VSM中,PPARγ损伤的有害作用可能是由增强的
PGE 2/E-前列腺素受体3(EP 3)信号在肾小球前阻力血管(小叶间动脉和
传入小动脉),导致肾血管阻力增加,并在过量盐期间使肾血流变钝
加载中肾灌注减弱与肾内一氧化氮(NO)生物利用度降低有关,
在喂食4%高盐饮食的S-P467 L小鼠中增加钠潴留。我们和其他人以前发表过
血管中的过氧化物酶体增殖物激活受体γ通过抗氧化基因的转录调节来防止氧化应激。损失
过氧化物酶体增殖物激活受体γ介导的抗氧化反应可能通过降低肾微血管中NO的生物利用度,
NO和活性氧如超氧化物之间的不平衡。K 01奖项的目标是
探讨血管过氧化物酶体增殖物激活受体γ(PPARγ)受损导致盐敏感性的肾脏机制。目标1将测试
假设a)血管PPARγ的损伤通过增强PGE 2/EP 3信号传导而减弱肾血流
B)EP 3的药理学抑制降低肾血管阻力,改善
肾灌注,并在PPARγ损伤期间减弱SS HT。目标2将检验以下假设:a)
血管过氧化物酶体增殖物激活受体γ导致NOS介导的NO生成减少和/或抗氧化防御受损,
肾脏,和B)肾内NO缺乏损害尿钠排泄,并有助于在过氧化物酶体增殖物激活受体γ损伤期间的SS-HT。
成功完成指导科学家发展补助金将使我获得必要的技能,
专业知识过渡到独立的学术界的高血压研究,重点是肾血管
生物学、氧化还原生物学和肾小管生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Wu其他文献
Jing Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Wu', 18)}}的其他基金
Novel Mechanisms Regulating Renal Perfusion and Kidney Redox Biology: Role in Salt Sensitive Hypertension
调节肾灌注和肾脏氧化还原生物学的新机制:在盐敏感性高血压中的作用
- 批准号:
10582079 - 财政年份:2021
- 资助金额:
$ 15.38万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 15.38万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 15.38万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 15.38万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 15.38万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 15.38万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 15.38万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 15.38万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 15.38万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 15.38万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 15.38万 - 项目类别:
Training Grant














{{item.name}}会员




