2/5 CAPER Computerized assessment of psychosis risk
2/5 CAPER 精神病风险的计算机化评估
基本信息
- 批准号:10592322
- 负责人:
- 金额:$ 39.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAttenuatedAutomobile DrivingBehavioralBiological MarkersClinicalCollaborationsComputing MethodologiesDetectionDeteriorationDiagnosisDimensionsEarly DiagnosisEarly InterventionEarly identificationFoundationsFrequenciesFunctional disorderGenerationsGoalsHuman ResourcesIndividualInternetIntervention TrialInterviewJointsLinkLongitudinal StudiesMachine LearningMeasuresMethodsModelingNeurobiologyOutcomeParticipantPatient Self-ReportPerformancePersonsPopulationPredictive ValuePrimary PreventionPsychopathologyPsychosesPublic HealthPublishingRecording of previous eventsResearchResearch PersonnelRiskRoleSample SizeSecondary PreventionSeveritiesSiteSpecificitySymptomsSystemTechniquesTest ResultTestingTrainingTranslatingUnited StatesWorkYouthclinical high risk for psychosisclinical practicecognitive testingcomputerizeddesignfollow-upfunctional declinefunctional outcomeshelp-seeking behaviorhigh riskhigh risk populationimprovedmachine learning classificationmachine learning methodneuralnew therapeutic targetnext generationonline deliverypreventpreventive interventionpsychosis riskpsychotic symptomsrecruitscreeningsocialtrait
项目摘要
Summary
Research suggests that early identification of individuals at clinical high risk (CHR) for psychosis may be
able to improve illness course. Studies suggest that early identification of CHR using specialized interviews
with help-seeking individuals (with attenuated psychosis symptoms) is a useful approach. This work has two
major limitations: 1) interview methods have limited specificity as only 20% of CHR individuals convert to
psychosis, and 2) the expertise needed to make CHR diagnosis is only accessible in a few academic centers.
We propose to develop a new psychosis symptom domain sensitive (PSDS) battery, prioritizing tasks that
show correlations with the symptoms that define psychosis and are tied to the neurobiological systems and
computational mechanisms implicated in these symptoms. To promote accessibility, we utilize behavioral tasks
that could be administered over the internet; this will set the stage for later research testing widespread
screening that would identify those most in need of in-depth assessment. To reach that goal we first need
determine which tasks are effective for predicting illness course and how this strategy compares to published
prediction methods. We propose to recruit 500 CHR participants, 500 help-seeking individuals, and 500
healthy controls across 5 sites with the following Aims: Aim 1A) To develop a psychosis risk calculator through
the application of machine learning (ML) methods to the measures from the PSDS battery. In an exploratory
ML historical analysis, we will determine the added value of combining the PSDS with self-report measures and
predicators;Aim 1B) We will evaluate group differences on the risk calculator score and hypothesize
that the risk calculator score of the CHR group will differ from help-seeking and healthy controls. We further
hypothesize that the risk calculator score of the CHR converters will differ significantly from groups of CHR
nonconverters, help-seeking and healthy controls. The inclusion of a help-seeking group is critical for
translating the risk-calculator into clinical practice, where the goal is to differentiate those at greatest risk for
psychosis from those with other forms of psychopathology; Aim 1C): Evaluate how baseline PSDS
performance relates to symptomatic outcome 2 years later examining: 1) symptomatic worsening treated as a
continuous variable, and 2) conversion to psychosis. We hypothesize that the PSDS calculator: 1) will predict
symptom course and, 2) that the differences observed between converters and nonconverters will be larger on
the PSDS calculator than on the NAPLS calculator. Aim 2) Use ML methods, as above, to develop calculators
that predict: 2A) social, and, 2B) role function deterioration, both observed over two years. Because negative
are more strongly linked to functional outcome than positive symptoms, we predict that negative mechanism tasks will be the strongest predictor of functional decline in both domains.This project will provide a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge computational methods that can be used to facilitate the earliest possible detection of psychosis risk.
总结
研究表明,早期识别精神病临床高风险个体可能是
能改善病程。研究表明,使用专门的访谈进行早期识别
与寻求帮助的个人(精神病症状减轻)是一个有用的方法。这项工作有两个
主要局限性:1)访谈方法的特异性有限,因为只有20%的受访者会转换为
精神病,和2)所需的专业知识,使精神病诊断是只有在少数学术中心。
我们建议开发一种新的精神病症状领域敏感(PSDS)电池,优先考虑的任务,
显示出与定义精神病的症状的相关性,并与神经生物学系统有关,
与这些症状有关的计算机制。为了促进可访问性,我们利用行为任务
可以通过互联网管理;这将为以后的研究测试奠定基础。
筛选,以确定最需要深入评估的人。为了实现这一目标,我们首先需要
确定哪些任务对预测疾病进程有效,以及该策略与已发表的
预测方法我们建议招募500名参与者,500名寻求帮助的人,500名
5个地点的健康对照,目的如下:目的1A)通过以下方法开发精神病风险计算器
机器学习(ML)方法在PSDS电池测量中的应用。以探索性
ML历史分析,我们将确定PSDS与自我报告措施相结合的附加值,
预测因子;目的1B)我们将评估风险计算器评分的组间差异,并假设
风险计算器的得分将不同于寻求帮助和健康对照组。我们进一步
假设转换者的风险计算器得分与转换者的风险计算器得分显著不同。
非转换者、求助者和健康对照者。包括一个寻求帮助的小组是至关重要的,
将风险计算器转化为临床实践,其目标是区分那些风险最大的人,
精神病与其他精神病理学形式的患者;目标1C):评价基线PSDS
性能与2年后的症状结局相关,检查:1)症状恶化作为
连续变量; 2)转化为精神病。我们假设PSDS计算器:1)将预测
症状过程,2)转换器和非转换器之间观察到的差异将更大,
PSDS计算器比NAPLS计算器。目标2)使用ML方法,如上所述,开发计算器
预测:2A)社会,和,2B)角色功能恶化,都观察了两年。因为消极
与积极症状相比,消极机制任务与功能结果的联系更紧密,我们预测消极机制任务将是这两个领域功能下降的最强预测因素。该项目将提供下一代神经元电池,与疾病机制相关联,并由尖端的计算方法提供动力,可用于促进尽早检测精神病风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VIJAY A MITTAL其他文献
VIJAY A MITTAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VIJAY A MITTAL', 18)}}的其他基金
2/5 CAPER Computerized assessment of psychosis risk
2/5 CAPER 精神病风险的计算机化评估
- 批准号:
9978241 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
2/5 CAPER Computerized assessment of psychosis risk
2/5 CAPER 精神病风险的计算机化评估
- 批准号:
10399414 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Prodromal Inventory for Negative Symptoms (PINS): A Development and Validation Study
阴性症状前驱清单 (PINS):开发和验证研究
- 批准号:
10320426 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
10374003 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
9754473 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
9910463 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
Prodromal Inventory for Negative Symptoms (PINS): A Development and Validation Study
阴性症状前驱清单 (PINS):开发和验证研究
- 批准号:
10031573 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
Prodromal Inventory for Negative Symptoms (PINS): A Development and Validation Study
阴性症状前驱清单 (PINS):开发和验证研究
- 批准号:
10528461 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
10596065 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
2/3 Community psychosis risk screening: An instrument development study
2/3 社区精神病风险筛查:仪器开发研究
- 批准号:
10216970 - 财政年份:2017
- 资助金额:
$ 39.57万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
- 批准号:
EP/Y034694/1 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 39.57万 - 项目类别:
Standard Grant