Understanding Essential Protein Dynamics through the Anharmonic Properties of Thermally Excited Vibrations

通过热激发振动的非简谐特性了解基本蛋白质动力学

基本信息

  • 批准号:
    10566333
  • 负责人:
  • 金额:
    $ 22.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

The selectivity of orthosteric drugs is often limited by the structural similarity of their binding sites in homologous proteins, while allosteric binding sites are far less conserved. This allows allosteric drugs to bind a target protein with higher selectivity, which reduces the potential for side-effects and lowers drug toxicity. However, allosteric drug discoveries have been limited to serendipitous observations because rational allosteric drug design strategies face several inherent challenges. These challenges are directly related to current limits in the predictability of protein conformational fluctuations and collective dynamics that are central to the mechanisms of allosteric drugs. The objective of this project is the development of computational methods to facilitate the rational design of allosteric drugs via predictions of protein conformational fluctuations and collective dynamics from all-atom simulations. In principle, all-atom molecular dynamics simulations can directly explore protein conformational dynamics but require sampling on timescales of milliseconds to seconds for systems of pharmacological interest. Even with state-of-the-art enhanced sampling techniques, the associated computational costs and hardware requirements (special purpose computers, national supercomputers, large distributed computing networks) limit such applications to a small number of systems. This project aims to make the computational discovery of allosteric mechanisms in proteins more efficient and achievable with computer hardware available in most research laboratories and universities. To this end, the methods developed for this project maximize the information on inherent protein dynamics that can be extracted from molecular dynamics simulations. These methods will initially be applied to identify allosteric mechanisms in matrix metallo-proteinases (MMPs), which represent a family of structurally homologous proteins involved in the degradation of the extracellular matrix. Several members of the MMP family have been identified as drug targets in the context of chronic inflammatory disease and cancer metastasis. MMPs feature a highly conserved catalytic center, which results in a low selectivity of orthosteric small molecule inhibitors for individual MMPs and limits their therapeutic use. This project aims to identify allosteric mechanisms in MMPs that enable the targeted development of highly selective allosteric MMP inhibitors as potential drug candidates. The methods developed for this project are general and not specific to MMPs. They will thus be applicable for the identification of allosteric mechanisms in other drug target proteins and will be made available as open- source software.
正构药物的选择性往往受到其在同源物中结合位点结构相似性的限制

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Heyden其他文献

Matthias Heyden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了