Understanding Essential Protein Dynamics through the Anharmonic Properties of Thermally Excited Vibrations
通过热激发振动的非简谐特性了解基本蛋白质动力学
基本信息
- 批准号:10566333
- 负责人:
- 金额:$ 22.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAllosteric SiteBindingBinding SitesComputer HardwareComputer softwareComputersComputing MethodologiesDataDetectionDevelopmentDiffusionDiseaseDrug Binding SiteDrug DesignDrug TargetingDrug toxicityEventExhibitsExtracellular Matrix DegradationFDA approvedFaceFamilyFreedomFrequenciesFrustrationFutureGenerationsGoalsHomologous ProteinIndividualInflammatoryKnowledgeLaboratory ResearchLeadLinkMatrix Metalloproteinase InhibitorMatrix MetalloproteinasesMethodologyMethodsMolecular ConformationMotionNeoplasm MetastasisPathologicPharmaceutical PreparationsPotential EnergyPropertyProtein ConformationProtein DynamicsProteinsProtocols documentationSamplingSideStructureSurfaceSystemTechniquesTherapeutic UsesUniversitiesValidationchronic inflammatory diseaseclinical applicationcluster computingcomputer frameworkcomputerized toolsconformational conversioncostdetection methoddrug candidatedrug developmentdrug discoverydrug mechanismexpectationhigh dimensionalityinhibitorinterestinteroperabilitymedication safetymembermillisecondmolecular dynamicsnovelopen sourcepharmacologicprotein functionrational designside effectsimulationsmall molecule inhibitorsoftware developmentsupercomputertumorvibration
项目摘要
The selectivity of orthosteric drugs is often limited by the structural similarity of their binding sites in homologous
proteins, while allosteric binding sites are far less conserved. This allows allosteric drugs to bind a target protein
with higher selectivity, which reduces the potential for side-effects and lowers drug toxicity. However, allosteric
drug discoveries have been limited to serendipitous observations because rational allosteric drug design
strategies face several inherent challenges. These challenges are directly related to current limits in the
predictability of protein conformational fluctuations and collective dynamics that are central to the mechanisms
of allosteric drugs. The objective of this project is the development of computational methods to facilitate the
rational design of allosteric drugs via predictions of protein conformational fluctuations and collective dynamics
from all-atom simulations.
In principle, all-atom molecular dynamics simulations can directly explore protein conformational dynamics but
require sampling on timescales of milliseconds to seconds for systems of pharmacological interest. Even with
state-of-the-art enhanced sampling techniques, the associated computational costs and hardware requirements
(special purpose computers, national supercomputers, large distributed computing networks) limit such
applications to a small number of systems. This project aims to make the computational discovery of allosteric
mechanisms in proteins more efficient and achievable with computer hardware available in most research
laboratories and universities. To this end, the methods developed for this project maximize the information on
inherent protein dynamics that can be extracted from molecular dynamics simulations.
These methods will initially be applied to identify allosteric mechanisms in matrix metallo-proteinases (MMPs),
which represent a family of structurally homologous proteins involved in the degradation of the extracellular
matrix. Several members of the MMP family have been identified as drug targets in the context of chronic
inflammatory disease and cancer metastasis. MMPs feature a highly conserved catalytic center, which results
in a low selectivity of orthosteric small molecule inhibitors for individual MMPs and limits their therapeutic use.
This project aims to identify allosteric mechanisms in MMPs that enable the targeted development of highly
selective allosteric MMP inhibitors as potential drug candidates.
The methods developed for this project are general and not specific to MMPs. They will thus be applicable for
the identification of allosteric mechanisms in other drug target proteins and will be made available as open-
source software.
邻位构型药物的选择性往往受到它们在同系物中结合部位的结构相似性的限制。
蛋白质,而变构结合部位要保守得多。这使得变构药物可以结合目标蛋白。
具有更高的选择性,从而减少了潜在的副作用,并降低了药物毒性。然而,变构
药物发现一直局限于偶然的观察,因为合理的变构药物设计
战略面临着几个内在的挑战。这些挑战直接与
蛋白质构象波动的可预测性和集体动力学是机制的核心
变构药物。这个项目的目标是开发计算方法,以促进
通过预测蛋白质构象涨落和集体动力学合理设计变构药物
来自全原子模拟。
原则上,全原子分子动力学模拟可以直接探索蛋白质构象动力学,但
对于具有药理意义的系统,要求在毫秒到秒的时间尺度上进行采样。即使是在
最先进的增强采样技术、相关的计算成本和硬件要求
(专用计算机、国家超级计算机、大型分布式计算网络)限制
应用到少数系统。该项目旨在使变构的计算发现
利用大多数研究中可用的计算机硬件更有效和更容易实现蛋白质的机制
实验室和大学。为此,为该项目开发的方法最大限度地提供了关于
可以从分子动力学模拟中提取的固有蛋白质动力学。
这些方法最初将用于鉴定基质金属蛋白酶(MMPs)中的变构机制,
它们代表了参与细胞外降解的一系列结构上同源的蛋白质
矩阵。基质金属蛋白酶家族的几个成员已被确定为慢性前列腺癌的药物靶点
炎症性疾病和癌症转移。MMPs具有高度保守的催化中心,这导致
正构体小分子抑制剂对单个MMPs的选择性较低,限制了其治疗用途。
该项目旨在确定MMPs中的变构机制,使其能够有针对性地开发高度
选择性变构基质金属蛋白酶抑制剂作为潜在的候选药物。
为该项目开发的方法是一般性的,并不是针对MMP的。因此,它们将适用于
鉴定其他药物靶蛋白中的变构机制,并将以开放的形式提供-
源软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Heyden其他文献
Matthias Heyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant














{{item.name}}会员




