A novel and simple mechanism by which cells can sense enzymatic flux
细胞感知酶通量的新颖而简单的机制
基本信息
- 批准号:10563638
- 负责人:
- 金额:$ 35.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino Acyl-tRNA SynthetasesBacteriaBehaviorBindingBiochemicalBiological AssayBiological ModelsCarbonCatalysisCellsComplementComplexComputer ModelsCoupledDataDiseaseDissectionElementsEnzymesEscherichia coliEukaryotaFeedbackGalactoseGalectin 1GeneticGlutamineGlycolysisHumanKineticsLiteratureMalignant NeoplasmsMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMethodsModalityModelingMolecular ConformationNitrogenNutrientPathway interactionsPhenotypePhysiologicalProcessPropertyRegulationRoleSaccharomyces cerevisiaeSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinStimulusSystemTestingTitrationsTranslationsUp-RegulationWorkYeastsenzyme substrate complexexperimental studyextracellulargalactokinaseinsightleucine-tRNAmutantnew therapeutic targetnovelnutrient metabolismreceptorresponsesensorsingle cell technologysynergismtooluptakewhole genome
项目摘要
Project Summary
Metabolism is a tightly controlled and complex process in which different nutrients are taken up and processed
to meet variable needs. The regulation of uptake and processing requires that many nutrients and metabolites
are sensed. This poses a challenge since some of the molecules that are being sensed are simultaneously
subject to processing. This has led to the suspicion that metabolic pathways may directly sense the flux through
the pathway, instead of sensing only the concentration of nutrients or metabolites. Recent work has confirmed
this by identifying a flux-sensing system in bacteria, although the mechanism used is complex and may not
translate to other systems. In preliminary work on the galactose utilization (GAL) pathway of Saccharomyces
cerevisiae, we have identified a novel putative mechanism for connecting enzymatic activity to signaling,
providing a simple way for metabolic flux to be measured. Because this mechanism is simple, we suspect that it
may occur in many pathways. We now propose to investigate this hypothetical mechanism in detail. The GAL
pathway is an ideal system in which to identify and mechanistically characterize flux sensing. It is a classic model
system for signaling in eukaryotes, and we have extensive methods and genetic tools available. Systematic high-
throughput quantitative measurements will be used to develop and refine computational models, which in turn
will be used to both guide and interpret experiments and to give insight into the physiological role of both flux
and concentration sensors. The insights we gain from the GAL pathway will then simplify the discovery of flux
sensors in other pathways. Next, we will bring the tools and models we develop to characterize GAL signaling
to bear on identifying and characterizing the sensor modalities in the pathway responsible for metabolizing
nitrogen in S. cerevisiae. Based on literature findings, we suspect that this pathway also contains a flux sensor.
We anticipate that identifying flux sensors in these pathways will immediately provide insight into the potential
for flux sensing in human metabolic pathways, and lead to the identification of promising new therapeutic targets.
项目摘要
新陈代谢是一个严格控制和复杂的过程,在这个过程中,不同的营养物质被吸收和处理。
以满足不同的需求。摄取和加工的调节需要许多营养物质和代谢物
都被感知到了。这带来了挑战,因为一些正在被感知的分子同时
还有待处理。这引起了人们的怀疑,新陈代谢途径可能直接通过
而不是仅仅感知营养物质或代谢物的浓度。最近的研究证实
这是通过识别细菌中的通量传感系统来实现的,尽管所用的机制很复杂,可能不会
转换到其他系统。酵母菌半乳糖利用途径的初步研究
Cerevisiae,我们已经确定了一种将酶活性与信号联系起来的新的假定机制,
为新陈代谢通量的测量提供了一种简单的方法。因为这个机制很简单,我们怀疑它
可能发生在许多途径上。我们现在建议详细研究这一假设机制。那个女孩
PATH是一种识别和机械表征通量传感的理想系统。这是一款经典款式
真核生物的信号系统,我们有广泛的方法和遗传工具可用。系统性高-
吞吐量的定量测量将用于开发和改进计算模型,而计算模型反过来
将用于指导和解释实验,并深入了解这两种助熔剂的生理作用
和浓度传感器。我们从GAL途径获得的洞察力将简化通量的发现
其他路径上的传感器。接下来,我们将介绍我们开发的用于表征GAL信号的工具和模型
负责识别和表征负责新陈代谢的通路中的传感器模式
酿酒酵母中的氮。根据文献发现,我们怀疑这条通路还含有一个流量传感器。
我们预计,识别这些通路中的流量传感器将立即提供对潜在
用于人体代谢途径中的通量传感,并导致识别有前景的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Springer其他文献
Michael Springer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Springer', 18)}}的其他基金
相似海外基金
Amino-acyl tRNA synthetases: investigations of tRNA specificity for application in ProxiMAX / synthetic biology.
氨酰 tRNA 合成酶:研究 tRNA 特异性在 ProxiMAX/合成生物学中的应用。
- 批准号:
BB/L015633/1 - 财政年份:2014
- 资助金额:
$ 35.07万 - 项目类别:
Training Grant














{{item.name}}会员




