A novel and simple mechanism by which cells can sense enzymatic flux
细胞感知酶通量的新颖而简单的机制
基本信息
- 批准号:10563638
- 负责人:
- 金额:$ 35.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino Acyl-tRNA SynthetasesBacteriaBehaviorBindingBiochemicalBiological AssayBiological ModelsCarbonCatalysisCellsComplementComplexComputer ModelsCoupledDataDiseaseDissectionElementsEnzymesEscherichia coliEukaryotaFeedbackGalactoseGalectin 1GeneticGlutamineGlycolysisHumanKineticsLiteratureMalignant NeoplasmsMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMethodsModalityModelingMolecular ConformationNitrogenNutrientPathway interactionsPhenotypePhysiologicalProcessPropertyRegulationRoleSaccharomyces cerevisiaeSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinStimulusSystemTestingTitrationsTranslationsUp-RegulationWorkYeastsenzyme substrate complexexperimental studyextracellulargalactokinaseinsightleucine-tRNAmutantnew therapeutic targetnovelnutrient metabolismreceptorresponsesensorsingle cell technologysynergismtooluptakewhole genome
项目摘要
Project Summary
Metabolism is a tightly controlled and complex process in which different nutrients are taken up and processed
to meet variable needs. The regulation of uptake and processing requires that many nutrients and metabolites
are sensed. This poses a challenge since some of the molecules that are being sensed are simultaneously
subject to processing. This has led to the suspicion that metabolic pathways may directly sense the flux through
the pathway, instead of sensing only the concentration of nutrients or metabolites. Recent work has confirmed
this by identifying a flux-sensing system in bacteria, although the mechanism used is complex and may not
translate to other systems. In preliminary work on the galactose utilization (GAL) pathway of Saccharomyces
cerevisiae, we have identified a novel putative mechanism for connecting enzymatic activity to signaling,
providing a simple way for metabolic flux to be measured. Because this mechanism is simple, we suspect that it
may occur in many pathways. We now propose to investigate this hypothetical mechanism in detail. The GAL
pathway is an ideal system in which to identify and mechanistically characterize flux sensing. It is a classic model
system for signaling in eukaryotes, and we have extensive methods and genetic tools available. Systematic high-
throughput quantitative measurements will be used to develop and refine computational models, which in turn
will be used to both guide and interpret experiments and to give insight into the physiological role of both flux
and concentration sensors. The insights we gain from the GAL pathway will then simplify the discovery of flux
sensors in other pathways. Next, we will bring the tools and models we develop to characterize GAL signaling
to bear on identifying and characterizing the sensor modalities in the pathway responsible for metabolizing
nitrogen in S. cerevisiae. Based on literature findings, we suspect that this pathway also contains a flux sensor.
We anticipate that identifying flux sensors in these pathways will immediately provide insight into the potential
for flux sensing in human metabolic pathways, and lead to the identification of promising new therapeutic targets.
项目概要
新陈代谢是一个严格控制的复杂过程,其中吸收和处理不同的营养物质
以满足多变的需求。吸收和加工的调节需要许多营养物质和代谢物
被感知到。这提出了一个挑战,因为一些被感测的分子同时
需进行处理。这导致人们怀疑代谢途径可能直接感知通过的通量
途径,而不是仅感测营养物或代谢物的浓度。最近的工作已经证实
这是通过识别细菌中的通量传感系统来实现的,尽管所使用的机制很复杂并且可能不会
翻译成其他系统。酵母菌半乳糖利用(GAL)途径的前期工作
酿酒酵母,我们已经确定了一种新的推定机制,用于将酶活性与信号传导联系起来,
提供了一种测量代谢通量的简单方法。因为这个机制很简单,我们怀疑它
可能发生在许多途径中。我们现在建议详细研究这种假设机制。加尔
路径是识别通量传感并对其进行机械表征的理想系统。这是一个经典模型
我们拥有广泛的方法和遗传工具。系统性高
吞吐量定量测量将用于开发和完善计算模型,进而
将用于指导和解释实验,并深入了解两种通量的生理作用
和浓度传感器。我们从 GAL 途径获得的见解将简化通量的发现
其他路径中的传感器。接下来,我们将带来我们开发的工具和模型来表征 GAL 信号传导
致力于识别和表征负责代谢的途径中的传感器模式
酿酒酵母中的氮。根据文献发现,我们怀疑该通路还包含通量传感器。
我们预计,识别这些路径中的通量传感器将立即提供对潜在的洞察力
用于人体代谢途径中的通量传感,并导致识别有前途的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Springer其他文献
Michael Springer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Springer', 18)}}的其他基金
相似海外基金
Amino-acyl tRNA synthetases: investigations of tRNA specificity for application in ProxiMAX / synthetic biology.
氨酰 tRNA 合成酶:研究 tRNA 特异性在 ProxiMAX/合成生物学中的应用。
- 批准号:
BB/L015633/1 - 财政年份:2014
- 资助金额:
$ 35.07万 - 项目类别:
Training Grant














{{item.name}}会员




