Gene Regulation and Memory in Bacterial Metabolism and Antibiotic Resistance
细菌代谢和抗生素耐药性中的基因调控和记忆
基本信息
- 批准号:10566736
- 负责人:
- 金额:$ 30.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAntibiotic ResistanceAntibioticsBacteriaBar CodesBiochemical PathwayBiologicalBiophysicsCarbonCellsClinicalComplexCosts and BenefitsCuesCulture MediaCustomDataDrug resistanceEnvironmentEnzymesEscherichia coliExposure toGene CombinationsGene Expression RegulationGenesGrowthHumanImage AnalysisInheritedKnowledgeLaboratoriesLac OperonLacZ GenesLibrariesMapsMeasurementMeasuresMemoryMetabolicMetabolic stressMicrobiologyMicrofluidicsMicroscopeMicroscopyModelingMothersMutationNutrientPeriodicalsPhenotypePhysiologic pulsePhysiologicalPopulationPopulation DynamicsProcessProductionPropertyProteinsRegulationRegulator GenesRepressionResearchResistanceResolutionSite-Directed MutagenesisSourceStarvationStressStructureSystemTestingTimeTreatment outcomeWorkantimicrobialbacterial communitybacterial metabolismbacterial resistancebiophysical modelcell growthcostdaughter celldesigndrug modificationefflux pumpenvironmental stressorexperimental studyfitnessgene inductiongut microbiomehost-associated microbial communitiesimprovedinnovationinsightinterestmicroorganismmolecular pumpmonolayermutantnoveloutcome predictionpredictive modelingresistance generesistance mechanismresistant strainresponse
项目摘要
Project Summary:
Bacterial cells have a repertoire of responses that can be used to survive under different types of
environmental stress. Changes in carbon sources cause cells to turn on specific metabolic genes, which are
later repressed when those sources are depleted. Antibiotic exposure can trigger the expression of molecular
pumps that remove the antibiotic from the cell, or the production of enzymes that specifically inactivate or
degrade it. In a continually fluctuating environment, the process of turning genes on and off can be inefficient
and cause growth lags. Our work shows that bacteria combine their responses with phenotypic memory – the
passage of stable proteins from mother to daughter cells – which allows cells to avoid growth lags in fluctuating
environments.
Using a combination of quantitative microbiology, microfluidics, microscopy, sequencing, and modeling, we will
study the costs and benefits of gene regulation in fluctuating environments. We will measure and model the
fitness landscape of phenotypic memory using a library of strains with perturbed memory levels. Competition
experiments in fluctuating environments will be used to test biophysical and population dynamics models.
We present an innovative modular system that enables direct comparison of different gene regulatory
strategies – including responsive, bistable, and constitutive regulation – for any gene of interest. We apply the
system to study different classes of antibiotic resistance mechanisms. The proposed experiments make use of
a custom-built microfluidic ‘chemoflux’ system that we developed, in which bacterial populations grow in
monolayers, tracked at single cell resolution under the microscope, while the growth media can be arbitrarily
fluctuated in time. Using the chemoflux and our image analysis algorithms, we are able to simultaneously track
hundreds of independent bacterial populations, and thereby measure population dynamics in fluctuating
environments.
We combine experiments with biophysical modeling to gain insights into the costs and benefits of gene
regulation and memory. Models are parameterized using experimental data in a wide range of conditions, and
rigorously tested by their predictions on competition experiments in fluctuating environments. The range of
experiments and modeling employed address different aspects of gene regulation and memory, and allows us
to bridge from detailed laboratory measurements to the general biological principles that underlie bacterial
survival.
项目摘要:
细菌细胞具有多种反应的曲目,可用于在不同类型的情况下生存
环境压力。碳源的变化导致细胞打开特定的代谢基因,这是
后来在这些来源耗尽时被压抑。抗生素暴露会触发分子的表达
从细胞中去除抗生素的泵,或者特别失活或
降解它。在不断波动的环境中,打开和关闭基因的过程效率低下
并导致生长滞后。我们的工作表明,批处理将其反应与表型记忆结合在一起 -
稳定蛋白从母亲到子细胞的通过 - 允许细胞避免生长滞后
环境。
使用定量微生物学,微流体,显微镜,测序和建模的组合,我们将
研究波动环境中基因调节的成本和收益。我们将测量和建模
使用具有干扰记忆水平的应变库的表型记忆的健身景观。竞赛
波动环境中的实验将用于测试生物物理和种群动态模型。
我们提出了一个创新的模块化系统,该系统可以直接比较不同的基因调节
策略(包括响应迅速,双重和本构调节),以供任何感兴趣的基因。我们应用
研究不同类别的抗生素抗性机制的系统。提出的实验利用
我们开发的定制的微流体“ Chemoflux”系统,其中细菌种群在其中生长
单层,在显微镜下以单细胞分辨率进行跟踪,而生长培养基可以任意地进行
及时波动。使用ChemoFlux和我们的图像分析算法,我们能够轻松跟踪
数百个独立的细菌种群,从而测量人口动态动态
环境。
我们将实验与生物物理建模相结合,以洞悉基因的成本和收益
调节和记忆。使用在各种条件下的实验数据进行参数化,并且
通过他们对波动环境中的竞争实验的预测进行了严格的测试。范围
实验和建模进行了解决基因调控和记忆的不同方面,并允许我们
从详细的实验室测量到基于细菌的一般生物学原理桥接
生存。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDO L KUSSELL其他文献
EDO L KUSSELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDO L KUSSELL', 18)}}的其他基金
Memory in Bacterial Responses to Fluctuating Stress
细菌对波动压力的反应的记忆
- 批准号:
9282447 - 财政年份:2016
- 资助金额:
$ 30.87万 - 项目类别:
Revealing Stochastic Switches in Bacteria: Theory, Modeling, and Experiments
揭示细菌中的随机开关:理论、建模和实验
- 批准号:
8538463 - 财政年份:2011
- 资助金额:
$ 30.87万 - 项目类别:
Revealing Stochastic Switches in Bacteria: Theory, Modeling, and Experiments
揭示细菌中的随机开关:理论、建模和实验
- 批准号:
8194768 - 财政年份:2011
- 资助金额:
$ 30.87万 - 项目类别:
Revealing Stochastic Switches in Bacteria: Theory, Modeling, and Experiments
揭示细菌中的随机开关:理论、建模和实验
- 批准号:
8727053 - 财政年份:2011
- 资助金额:
$ 30.87万 - 项目类别:
Revealing Stochastic Switches in Bacteria: Theory, Modeling, and Experiments
揭示细菌中的随机开关:理论、建模和实验
- 批准号:
8333393 - 财政年份:2011
- 资助金额:
$ 30.87万 - 项目类别:
Revealing Stochastic Switches in Bacteria: Theory, Modeling, and Experiments
揭示细菌中的随机开关:理论、建模和实验
- 批准号:
8916141 - 财政年份:2011
- 资助金额:
$ 30.87万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
- 批准号:62301194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相场模型时空高精度算法的构造与分析
- 批准号:12371396
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
High-throughput disulfide and FRET scanning to reveal protein conformational ensembles in vitro and in vivo.
高通量二硫键和 FRET 扫描可揭示体外和体内蛋白质构象整体。
- 批准号:
10191303 - 财政年份:2021
- 资助金额:
$ 30.87万 - 项目类别:
Clinical Development and Evaluation of a Deep Learning Approach to Improve Diagnostic Accuracy
提高诊断准确性的深度学习方法的临床开发和评估
- 批准号:
10251360 - 财政年份:2019
- 资助金额:
$ 30.87万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10226047 - 财政年份:2018
- 资助金额:
$ 30.87万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10460988 - 财政年份:2018
- 资助金额:
$ 30.87万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
9761970 - 财政年份:2018
- 资助金额:
$ 30.87万 - 项目类别: