Overcoming Resistance to Novel Bacterial Topoisomerase Inhibitors
克服对新型细菌拓扑异构酶抑制剂的耐药性
基本信息
- 批准号:10567079
- 负责人:
- 金额:$ 60.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-05 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAmidesAmino Acid SubstitutionAnti-Bacterial AgentsAntimicrobial ResistanceAreaBacteriaBindingBiochemicalBiochemical PharmacologyBiologicalBiological AssayCardiovascular systemCellsChemicalsClinicalCollectionCoupledDNADNA DamageDNA Double Strand BreakDNA GyraseDNA Topoisomerase IVDevelopmentDrug TargetingEnsureEnzyme InhibitionEnzymesEvaluationExhibitsGenus staphylococcusGoalsGrowthHealthHumanIn VitroInfectionKineticsKnowledgeLabelLeadMeasuresMetabolismMethicillin ResistanceMicrobiologyMinimum Inhibitory Concentration measurementModelingModificationMolecularMulti-Drug ResistanceMutationPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhasePhase III Clinical TrialsPoint MutationPositioning AttributePropertyRefractoryResistanceResistance developmentResistance profileRiskRoentgen RaysSOS ResponseSafetySeriesStaphylococcus aureusStructural ModelsStructureTherapeuticTimeTopoisomerase InhibitorsTopoisomerase-II Inhibitoralkalinityanalogbacterial resistanceclinical candidateclinical developmentcomputational chemistrydesigndrug resistant bacteriafitnessfluoroquinolone resistanceimprovedin vivoinhibitorinhibitor therapyinnovationinsightlead candidatelipophilicitymethicillin resistant Staphylococcus aureusmolecular dynamicsmortalitymultidisciplinarymutantnovelpathogenphase II trialrational designresistance frequencyresistance mutationresistant strainstructural biologysuccesstool
项目摘要
PROJECT SUMMARY
The rising tide of antimicrobial resistance threatens catastrophic increases in mortality in the coming
decades. Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading pathogen. New antibacterial
classes are urgently needed to ensure adequate therapeutic options for MRSA and other resistant bacteria.
Novel Bacterial Type II Topoisomerase Inhibitors (NBTIs) derive their efficacy by targeting the clinically validated
essential enzymes, DNA gyrase and topoisomerase IV (TopoIV). A novel binding mode avoids target-based
cross-resistance to fluoroquinolones and establishes NBTIs as a new antibacterial class. A lead, gepotidacin,
stands at the threshold of FDA approval, with several completed Phase 2 and ongoing Phase 3 clinical trials.
Resistance to gepotidacin has been observed but is very poorly characterized. The transformative potential of
the NBTIs will require a better understanding of mechanisms of action/resistance and new medicinal chemistry
strategies to deliver highly efficacious successor NBTIs, the areas of focus in the present proposal.
To date, we have synthesized >250 highly diverse NBTIs. Our anti-MRSA lead, 147, showed in vivo
efficacy in two infection models and a favorable cardiovascular safety profile by rationally designed reductions
of basicity and lipophilicity. We have generated NBTIs with improved dual-targeting of gyrase and TopoIV,
reduced rates of spontaneous resistance, and greater antibacterial activity over gepotidacin against NBTI-
resistant MRSA. In contrast to gepotidacin, several newly synthesized amide-containing NBTIs induced DNA
double strand breaks which we will investigate as a new mechanism of action for the NBTI class. Critically, we
also propose that studies with our existing and planned NBTIs, coupled with our demonstrated expertise in
microbiology, biochemical pharmacology, computational chemistry, and structural biology, will effectively
address major unanswered questions regarding the emergence of resistance to NBTIs and strategies to
overcome this issue. Overall, our goal is to generate lead compounds as innovative chemical tools and/or clinical
candidates for further development.
Three integrated specific aims will be pursued by our interdisciplinary team to:
1) Synthesize structurally and mechanistically distinct NBTIs with druglike properties
2) Evaluate new NBTIs for antibacterial activity & identify/characterize key NBTI-resistant S. aureus mutants
3) Elucidate the mechanism(s) of action of and molecular resistance to new lead NBTIs
Aim 1 serves as the innovation engine for the proposal. Aims 2 and 3 support Aim 1 through iterative cycles
of rigorous assays to provide new lead compounds. New fundamental information concerning the origin,
mechanism, and impact/circumvention of acquired resistance to NBTIs will advance this new class of
antibacterials as a pathway to promote human health by addressing the crisis in antimicrobial resistance.
项目概要
抗生素耐药性的不断上升可能会导致未来死亡率的灾难性增加
几十年。耐甲氧西林金黄色葡萄球菌 (MRSA) 仍然是主要病原体。新型抗菌
迫切需要培训课程,以确保针对 MRSA 和其他耐药细菌有足够的治疗选择。
新型细菌 II 型拓扑异构酶抑制剂 (NBTI) 通过针对经过临床验证的细菌发挥功效
必需酶、DNA 旋转酶和拓扑异构酶 IV (TopoIV)。一种新颖的绑定模式避免了基于目标的
与氟喹诺酮类药物的交叉耐药性,并将 NBTI 确立为一种新的抗菌药物。铅,gepotidacin,
即将获得 FDA 批准,多项已完成的 2 期临床试验和正在进行的 3 期临床试验。
已观察到对gepotidacin 的耐药性,但其特征却很差。的变革潜力
NBTI 需要更好地理解作用/耐药机制和新的药物化学
提供高效后续 NBTI 的策略,这是本提案的重点领域。
迄今为止,我们已经合成了超过 250 种高度多样化的 NBTI。我们的抗 MRSA 先导化合物 147 在体内得到了证明
通过合理设计的减少,在两种感染模型中具有功效,并具有良好的心血管安全性
的碱性和亲脂性。我们已经生成了具有改进的旋转酶和 TopoIV 双靶向的 NBTI,
自发耐药率降低,并且比 Gepotidacin 对 NBTI 具有更强的抗菌活性
耐药 MRSA。与gepotidacin 相比,几种新合成的含酰胺的 NBTI 诱导 DNA
我们将研究双链断裂作为 NBTI 类的新作用机制。关键的是,我们
还建议对我们现有的和计划中的 NBTI 进行研究,再加上我们在
微生物学、生化药理学、计算化学和结构生物学,将有效地
解决有关 NBTI 抵抗的出现和战略的主要未解答问题
克服这个问题。总的来说,我们的目标是产生先导化合物作为创新的化学工具和/或临床
进一步发展的候选人。
我们的跨学科团队将追求三个综合的具体目标:
1) 合成结构和机制上不同且具有类药特性的 NBTI
2) 评估新 NBTI 的抗菌活性并鉴定/表征关键 NBTI 抗性金黄色葡萄球菌突变体
3) 阐明新先导 NBTI 的作用机制和分子耐药性
目标 1 作为该提案的创新引擎。目标 2 和 3 通过迭代循环支持目标 1
进行严格的分析以提供新的先导化合物。有关起源的新基本信息,
机制,以及对 NBTI 获得性耐药性的影响/规避将推进这一新类别
抗菌药物是通过解决抗菌药物耐药性危机来促进人类健康的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark J. Mitton-Fry其他文献
Mark J. Mitton-Fry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark J. Mitton-Fry', 18)}}的其他基金
Novel Bacterial Topoisomerase Inhibitors Targeting Gram-Negative Bacteria
针对革兰氏阴性菌的新型细菌拓扑异构酶抑制剂
- 批准号:
10242615 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
相似海外基金
Collaborative Research: NSF-DFG: CAS: Electrochemical Hydrogenation of Amides and Esters
合作研究:NSF-DFG:CAS:酰胺和酯的电化学氢化
- 批准号:
2140205 - 财政年份:2022
- 资助金额:
$ 60.23万 - 项目类别:
Standard Grant
Collaborative Research: NSF-DFG: CAS: Electrochemical Hydrogenation of Amides and Esters
合作研究:NSF-DFG:CAS:酰胺和酯的电化学氢化
- 批准号:
2140196 - 财政年份:2022
- 资助金额:
$ 60.23万 - 项目类别:
Standard Grant
Atroposelective Synthesis of Hindered Amides - Exploration of Synthetic Peptide Catalysts -
受阻酰胺的天体选择性合成-合成肽催化剂的探索-
- 批准号:
504378162 - 财政年份:2022
- 资助金额:
$ 60.23万 - 项目类别:
WBP Fellowship
Development of Peptide Chemical Modification Enabled by N-Halogenation of Amides
酰胺 N-卤化实现的肽化学修饰的发展
- 批准号:
22H02743 - 财政年份:2022
- 资助金额:
$ 60.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modulating Signaling Endocannabinoids and Fatty Acid Amides
调节信号传导内源性大麻素和脂肪酸酰胺
- 批准号:
10532252 - 财政年份:2021
- 资助金额:
$ 60.23万 - 项目类别:
CAREER: SusChEM: Iron Catalysts for the Reduction of Amides
职业:SusChEM:用于还原酰胺的铁催化剂
- 批准号:
2146728 - 财政年份:2021
- 资助金额:
$ 60.23万 - 项目类别:
Continuing Grant
Modulating Signaling Endocannabinoids and Fatty Acid Amides
调节信号传导内源性大麻素和脂肪酸酰胺
- 批准号:
10399712 - 财政年份:2021
- 资助金额:
$ 60.23万 - 项目类别:
Nickel-Catalyzed Alpha-Arylation of Secondary Amides
镍催化仲酰胺的α-芳基化
- 批准号:
558383-2020 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Function of primary fatty acid amides as lipid mediators
伯脂肪酸酰胺作为脂质介质的功能
- 批准号:
20K21285 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Catalytic Synthesis of Pharmaceutical Amides in Water
水中催化合成药用酰胺
- 批准号:
EP/T01430X/1 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
Research Grant














{{item.name}}会员




