Overcoming Resistance to Novel Bacterial Topoisomerase Inhibitors
克服对新型细菌拓扑异构酶抑制剂的耐药性
基本信息
- 批准号:10567079
- 负责人:
- 金额:$ 60.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-05 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAmidesAmino Acid SubstitutionAnti-Bacterial AgentsAntimicrobial ResistanceAreaBacteriaBindingBiochemicalBiochemical PharmacologyBiologicalBiological AssayCardiovascular systemCellsChemicalsClinicalCollectionCoupledDNADNA DamageDNA Double Strand BreakDNA GyraseDNA Topoisomerase IVDevelopmentDrug TargetingEnsureEnzyme InhibitionEnzymesEvaluationExhibitsGenus staphylococcusGoalsGrowthHealthHumanIn VitroInfectionKineticsKnowledgeLabelLeadMeasuresMetabolismMethicillin ResistanceMicrobiologyMinimum Inhibitory Concentration measurementModelingModificationMolecularMulti-Drug ResistanceMutationPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhasePhase III Clinical TrialsPoint MutationPositioning AttributePropertyRefractoryResistanceResistance developmentResistance profileRiskRoentgen RaysSOS ResponseSafetySeriesStaphylococcus aureusStructural ModelsStructureTherapeuticTimeTopoisomerase InhibitorsTopoisomerase-II Inhibitoralkalinityanalogbacterial resistanceclinical candidateclinical developmentcomputational chemistrydesigndrug resistant bacteriafitnessfluoroquinolone resistanceimprovedin vivoinhibitorinhibitor therapyinnovationinsightlead candidatelipophilicitymethicillin resistant Staphylococcus aureusmolecular dynamicsmortalitymultidisciplinarymutantnovelpathogenphase II trialrational designresistance frequencyresistance mutationresistant strainstructural biologysuccesstool
项目摘要
PROJECT SUMMARY
The rising tide of antimicrobial resistance threatens catastrophic increases in mortality in the coming
decades. Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading pathogen. New antibacterial
classes are urgently needed to ensure adequate therapeutic options for MRSA and other resistant bacteria.
Novel Bacterial Type II Topoisomerase Inhibitors (NBTIs) derive their efficacy by targeting the clinically validated
essential enzymes, DNA gyrase and topoisomerase IV (TopoIV). A novel binding mode avoids target-based
cross-resistance to fluoroquinolones and establishes NBTIs as a new antibacterial class. A lead, gepotidacin,
stands at the threshold of FDA approval, with several completed Phase 2 and ongoing Phase 3 clinical trials.
Resistance to gepotidacin has been observed but is very poorly characterized. The transformative potential of
the NBTIs will require a better understanding of mechanisms of action/resistance and new medicinal chemistry
strategies to deliver highly efficacious successor NBTIs, the areas of focus in the present proposal.
To date, we have synthesized >250 highly diverse NBTIs. Our anti-MRSA lead, 147, showed in vivo
efficacy in two infection models and a favorable cardiovascular safety profile by rationally designed reductions
of basicity and lipophilicity. We have generated NBTIs with improved dual-targeting of gyrase and TopoIV,
reduced rates of spontaneous resistance, and greater antibacterial activity over gepotidacin against NBTI-
resistant MRSA. In contrast to gepotidacin, several newly synthesized amide-containing NBTIs induced DNA
double strand breaks which we will investigate as a new mechanism of action for the NBTI class. Critically, we
also propose that studies with our existing and planned NBTIs, coupled with our demonstrated expertise in
microbiology, biochemical pharmacology, computational chemistry, and structural biology, will effectively
address major unanswered questions regarding the emergence of resistance to NBTIs and strategies to
overcome this issue. Overall, our goal is to generate lead compounds as innovative chemical tools and/or clinical
candidates for further development.
Three integrated specific aims will be pursued by our interdisciplinary team to:
1) Synthesize structurally and mechanistically distinct NBTIs with druglike properties
2) Evaluate new NBTIs for antibacterial activity & identify/characterize key NBTI-resistant S. aureus mutants
3) Elucidate the mechanism(s) of action of and molecular resistance to new lead NBTIs
Aim 1 serves as the innovation engine for the proposal. Aims 2 and 3 support Aim 1 through iterative cycles
of rigorous assays to provide new lead compounds. New fundamental information concerning the origin,
mechanism, and impact/circumvention of acquired resistance to NBTIs will advance this new class of
antibacterials as a pathway to promote human health by addressing the crisis in antimicrobial resistance.
项目摘要
抗菌抗性的上升潮流威胁到即将到来的死亡率的灾难性增加
几十年。耐甲氧西林金黄色葡萄球菌(MRSA)仍然是领先的病原体。新抗菌
迫切需要类别以确保MRSA和其他耐药细菌的足够治疗选择。
新型细菌II型拓扑异构酶抑制剂(NBTIS)通过靶向临床验证来提高其功效
必需酶,DNA陀螺酶和拓扑异构酶IV(topoiv)。一种新颖的绑定模式避免了基于目标的绑定模式
对氟喹诺酮类的抗性,并将NBTIS建立为新的抗菌类别。铅,gepotidacin,
位于FDA批准的门槛上,有几个完整的第2阶段和正在进行的3阶段临床试验。
已经观察到了对吉普迪拉辛的抗性,但表征的特征很差。的变革潜力
NBTI将需要更好地理解动作/抗药性机制和新药物的化学机制
提供高效的继任者NBTI的策略,即本提案的重点领域。
迄今为止,我们的合成> 250个高度多样化的NBTI。我们的抗MRSA铅147在体内显示
通过合理设计的降低,在两个感染模型和有利的心血管安全性方面的功效
碱性和亲脂性。我们已经产生了NBTI,并改善了Gyrase和topoiv的双重目标,
降低自发性抗性的速率,而抗菌素比gepotidacin降低了NBTI-的抗菌活性
抵抗MRSA。与Gepotidacin相反,几种新合成的含酰胺的NBTI诱导的DNA
双链断裂,我们将作为NBTI类的新作用机理进行调查。批判性,我们
还建议对我们现有和计划的NBTI进行研究,再加上我们在
微生物学,生化药理学,计算化学和结构生物学将有效地有效
解决有关对NBTIS抵抗的出现和战略的主要问题的问题
克服这个问题。总体而言,我们的目标是作为创新的化学工具和/或临床生成铅化合物
候选人进一步发展。
我们的跨学科团队将追求三个综合目标:
1)与药物样性质合成结构和机械上不同的NBTI
2)评估新的NBTI用于抗菌活性并识别/表征耐NBTi的金黄色葡萄球菌突变体
3)阐明对新铅NBTI的作用和分子抗性的机制
AIM 1是该提案的创新引擎。目标2和3支持目标1通过迭代周期
严格的测定法以提供新的铅化合物。有关起源的新基本信息,
机制以及对NBTI的抗药性的影响/规避将推进这一新类别
通过解决抗菌抗性危机,抗菌作为促进人类健康的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark J. Mitton-Fry其他文献
Mark J. Mitton-Fry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark J. Mitton-Fry', 18)}}的其他基金
Novel Bacterial Topoisomerase Inhibitors Targeting Gram-Negative Bacteria
针对革兰氏阴性菌的新型细菌拓扑异构酶抑制剂
- 批准号:
10242615 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
相似国自然基金
钯催化桥联C-C键活化反应合成中环至大环内酯和内酰胺
- 批准号:22371069
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
植物乳杆菌烟酰胺单核苷酸生物合成途径关键基因挖掘与调控机制研究
- 批准号:32302050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于水溶性共轭聚电解质构筑的芳香聚酰胺膜及其长效抗氯机制
- 批准号:22376027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
谷氨酰胺通过调控髓核细胞糖酵解-AMPK乳酸化修饰抑制椎间盘退变的机制研究
- 批准号:82372437
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
腈水解酶的催化杂泛性机理解析及其在S-2,2-二甲基环丙烷甲酰胺合成中的应用
- 批准号:22308332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
- 批准号:
10319992 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
- 批准号:
10083219 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
Evolutionary Design of Enzyme Specificity and Chemistry
酶特异性和化学的进化设计
- 批准号:
7661264 - 财政年份:2003
- 资助金额:
$ 60.23万 - 项目类别:
Factor XIII Activation and Substrate Specificity
XIII 因子激活和底物特异性
- 批准号:
7626327 - 财政年份:2002
- 资助金额:
$ 60.23万 - 项目类别:
Factor XIII Activation and Substrate Specificity
XIII 因子激活和底物特异性
- 批准号:
7849591 - 财政年份:2002
- 资助金额:
$ 60.23万 - 项目类别: