Resistance mechanisms to autophagy-modulating therapies
自噬调节疗法的耐药机制
基本信息
- 批准号:10565868
- 负责人:
- 金额:$ 64.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmAntigen PresentationAutophagocytosisBRAF geneBiotechnologyCD8-Positive T-LymphocytesCancer ModelCancer PatientCell DeathCell SurvivalCell membraneCell-Mediated CytolysisCellsCeramide glucosyltransferaseChemicalsCholesterolClinicClinicalClinical DataClinical TrialsCollaborationsCombined Modality TherapyDevelopmentEnzymesExhibitsFDA approvedFutureGenerationsGenesGleanHydroxychloroquineImmuneImmune checkpoint inhibitorImmunotherapyInstitutionKnowledgeLipidsLow Density Lipoprotein ReceptorLysosomesMAP Kinase GeneMEK inhibitionMEKsMacrophageMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMelanoma CellMembrane MicrodomainsMetabolicModelingOncologistPathway interactionsPatient-Focused OutcomesPatientsPhenotypePre-Clinical ModelProteinsRandomizedRegimenResistanceResistance developmentRoleSR-B proteinsSamplingSourceSphingolipidsSystems BiologyT-Cell ActivationTestingTherapeuticToxic effectTumor ImmunityTumor-associated macrophagesWorkanti-PD1 antibodiesantitumor agentcancer clinical trialcancer therapychemotherapyclinically relevantcomparison controlenzyme pathwayexperimental studyextracellularfirst-in-humangenetic manipulationhumanized mouseimprovedimproved outcomein vivoin vivo Modelinhibition of autophagyinhibitorlipid metabolismlipidomemelanomamouse modelmutantneoplastic cellnew combination therapiesnovelnovel therapeutic interventionnovel therapeuticsoverexpressionpalmitoyl-protein hydrolasepatient derived xenograft modelphase I trialphase II trialpre-clinicalpreclinical studyreconstitutionrecruitresistance mechanismresponsestandard of caretargeted agenttargeted treatmenttherapy outcometumortumor growth
项目摘要
Project Summary
Although targeted therapy and immune checkpoint inhibitors have made a major impact on survival for
some patients with advanced cancer, the majority of patients do not respond to standard of care treatments.
Abundant evidence indicates autophagy is induced by chemotherapy and targeted therapy, and also limits the
efficacy of immunotherapy. Clinical trials testing autophagy inhibitor combinations show encouraging preliminary
results with increased response rates when compared to standard of care approaches. New autophagy inhibitors
are entering clinical trials. Preclinical studies and the available clinical data indicate that tumors can overcome
autophagy modulating therapies producing resistance. There is a critical unmet need to understand
mechanisms of resistance to autophagy-modulating therapy. Using melanoma as a model we have
discovered that extensive lipid raft induction is induced by autophagy modulating therapy. This is especially
pronounced with lysosomal autophagy inhibition, which induces the expression of key proteins (LDLR, SR-B1,
and UGCG) in the cholesterol and sphingolipid salvage pathways (CSSP). At least one of these enzymes,
UGCG, can be targeted with an FDA approved therapy eliglustat and preliminary results indicate combined
autophagy inhibition and UGCG inhibition produces synergistic antitumor activity in vivo. This proposal will test
the hypothesis that the increased expression of CSSP and subsequent lipid raft formation induced by
autophagy-modulating therapy promotes cell survival, and may be a key druggable vulnerability that can be
targeted to improve therapeutic outcomes in cancer. To test this hypothesis, we will leverage the longstanding
collaboration between Dr. Amaravadi (oncologist, autophagy expert) and Dr. Speicher (systems biology expert).
We also recruited Dr. Meenhard Herlyn, a melanoma expert who has developed a humanized mouse model and
bank of patient-derived xenografts, as well as Dr. Phyllis Ginotty, a biostatistician who has worked closely with
this team for years. In Aim 1 we will define the mechanism by which autophagy modulation regulates the
cholesterol and sphingolipid scavenging pathways (CSSP). We will determine the effects of chemical or genetic
manipulation inhibition of key CSSP genes in lipid-depleted and precisely reconstituted media on tumor cell
survival. In Aim 2 we will determine the role of UGCG as a driver of resistance across melanoma therapy
combinations in in vivo models. We will utilize a panel of patient-derived xenograft (PDX) models generated from
BRAF mutant and NRAS mutant melanoma patients to determine if targeting UGCG results in decreased lipid
raft assembly, that overcomes resistance to clinically relevant therapies. Impact: These studies will determine
how two key resistance mechanisms to cancer therapies, autophagy and altered lipid metabolism, intersect. Our
results should uncover new therapeutic vulnerabilities in melanoma as well as other cancers and should identify
new therapeutic combinations incorporating CSSP inhibitors to be tested in future clinical trials, which could
significantly improve outcomes for cancer patients.
项目摘要
尽管靶向治疗和免疫检查点抑制剂对患者的存活率产生了重大影响
一些晚期癌症患者,大多数患者对标准的护理治疗没有反应。
大量证据表明,自噬是由化疗和靶向治疗引起的,也限制了
免疫治疗的疗效。测试自噬抑制剂组合的临床试验显示令人鼓舞的初步结果
结果与标准护理方法相比,应答率更高。新型自噬抑制剂
正在进入临床试验阶段。临床前研究和现有的临床数据表明,肿瘤可以克服
产生耐药性的自噬调节疗法。有一种严重的未得到满足的需求需要理解
抵抗自噬调节治疗的机制。用黑色素瘤作为我们的模型
发现广泛的脂筏诱导是通过自噬调节治疗。这是特别的
明显的溶酶体自噬抑制,诱导关键蛋白(LDLR,SR-B1,
和UGCG)在胆固醇和鞘脂挽救途径(CSSP)中。这些酶中至少有一种,
UGCG,可以与FDA批准的利格卢斯特治疗靶向,初步结果表明联合使用
抑制自噬和抑制UGCG在体内产生协同抗肿瘤活性。这项提议将检验
假设CSSP的表达增加和随后的脂筏形成
自噬调节疗法促进细胞存活,可能是一个关键的可药物脆弱性,可能是
旨在改善癌症的治疗结果。为了检验这一假设,我们将利用长期存在的
Amaravadi博士(肿瘤学家、自噬专家)和Speicher博士(系统生物学专家)之间的合作。
我们还招募了黑色素瘤专家Meenhard Herlyn博士,他开发了人源化的小鼠模型,并
病人来源的异种移植物银行,以及菲利斯·吉诺蒂博士,一位与
这支球队已经有很多年了。在目标1中,我们将定义自噬调节调节
胆固醇和鞘脂清除途径(CSSP)。我们将确定化学或遗传因素的影响
去脂精重组培养基中CSSP关键基因对肿瘤细胞的操纵抑制作用
生死存亡。在目标2中,我们将确定UGCG作为黑色素瘤治疗耐药的驱动因素的作用。
活体模型中的组合。我们将利用一组患者衍生的异种移植(PDX)模型
BRAF突变和NRAS突变黑色素瘤患者确定靶向UGCG是否会导致降脂
筏组件,克服了对临床相关疗法的抵抗力。影响:这些研究将确定
癌症治疗的两个关键耐药机制--自噬和脂类代谢改变--是如何交叉的。我们的
结果应该会发现黑色素瘤和其他癌症的新的治疗漏洞,并应该发现
包含CSSP抑制剂的新治疗组合将在未来的临床试验中进行测试,这可能
显著改善癌症患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAVI K AMARAVADI其他文献
RAVI K AMARAVADI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAVI K AMARAVADI', 18)}}的其他基金
Resistance mechanisms to autophagy-modulating therapies
自噬调节疗法的耐药机制
- 批准号:
10345115 - 财政年份:2022
- 资助金额:
$ 64.12万 - 项目类别:
Targeting autophagy to enhance immune checkpoint inhibition
靶向自噬增强免疫检查点抑制
- 批准号:
10480852 - 财政年份:2021
- 资助金额:
$ 64.12万 - 项目类别:
Targeting autophagy to enhance immune checkpoint inhibition
靶向自噬增强免疫检查点抑制
- 批准号:
10268745 - 财政年份:2021
- 资助金额:
$ 64.12万 - 项目类别:
Molecular mechanisms of BRAF inhibitor induced UPR and autophagy
BRAF抑制剂诱导UPR和自噬的分子机制
- 批准号:
8945350 - 财政年份:2015
- 资助金额:
$ 64.12万 - 项目类别:
Molecular mechanisms of BRAF inhibitor induced UPR and autophagy
BRAF抑制剂诱导UPR和自噬的分子机制
- 批准号:
9131669 - 财政年份:2015
- 资助金额:
$ 64.12万 - 项目类别:
Molecular mechanisms of BRAF inhibitor induced UPR and autophagy
BRAF抑制剂诱导UPR和自噬的分子机制
- 批准号:
9768184 - 财政年份:2015
- 资助金额:
$ 64.12万 - 项目类别:
HLTF gene silencing: a novel determinant of sensitivity to autophagy inhibition
HLTF 基因沉默:自噬抑制敏感性的新决定因素
- 批准号:
8664818 - 财政年份:2013
- 资助金额:
$ 64.12万 - 项目类别:
HLTF gene silencing: a novel determinant of sensitivity to autophagy inhibition
HLTF 基因沉默:自噬抑制敏感性的新决定因素
- 批准号:
8843267 - 财政年份:2013
- 资助金额:
$ 64.12万 - 项目类别:














{{item.name}}会员




