Single-molecule dynamics in solution with anti-Brownian trapping

具有反布朗捕获的溶液中的单分子动力学

基本信息

项目摘要

We have made progress on the following two areas during the past year a) phase-separating pyrenoid proteins form complexes in the dilute phase. Recently, liquid-liquid phase separation was found to drive the assembly of many cellular compartments that lack membranes (also referred to as biomolecular condensates) and became an emergent new paradigm in cellular biology. While most studies of biomolecular phase separation have focused on the condensed phase, relatively little is known about the dilute phase. Theory suggests that stable complexes form in the dilute phase of two-component phase-separating systems, impacting phase separation; however, these complexes have not been interrogated experimentally. We show that such complexes indeed exist, using an in vitro reconstitution system of a phase-separated organelle, the algal pyrenoid, consisting of purified proteins Rubisco and EPYC1. Applying fluorescence correlation spectroscopy (FCS) to measure diffusion coefficients, we found that complexes form in the dilute phase with or without condensates present. The majority of these complexes contain exactly one Rubisco molecule. Additionally, we developed a simple analytical model which recapitulates experimental findings and provides molecular insights into the dilute phase organization. Thus, our results demonstrate the existence of protein complexes in the dilute phase, which could play important roles in the stability, dynamics, and regulation of condensates. b) Single-molecule dissection of gRNA conformation during Cas9 holoenzyme assembly. Biomolecules carry out their function by cycling through a series of functional states. To better understand the structural-functional relations, it is of tremendous interest to probe structure at sequential stages of the functional states. We recently used the ABEL-FRET platform to probe the 3-end structure of CRISPR RNA (crRNA) at the single-molecule level as it assembles into the Cas9 holoenzyme. For every molecule, its assembly state is unambiguously determined using hydrodynamic profiling and its 3-end structure is probed by a pair of strategically placed FRET dyes. Strikingly, we discovered structural heterogeneity and dynamics at every stage of the assembly pathway that is, crRNA, guide RNA (gRNA, or crRNA-tracrRNA hybrid), Cas9-gRNA complex and Cas9-gRNA bound with substrate DNA, highlighting the importance of RNA structural diversity. Current work focuses on using RNA structural prediction tools to generate structural models consistent with single-molecule FRET measurements and devising plausible pathways of Cas9 holoenzyme assembly. This work could potentially shed light on fundamental biophysical principles of Cas9-gRNA recognition c) Towards a single-molecule view of SARS-COV-2 main protease activity. The main protease of SARS-COV-2 (MPro) is indispensable for the coronavirus replication and propagation. MPro exists as a homodimer and is responsible for most maturation cleavage events within the precursor polyprotein. Due to its vital roles, MPro has been a prominent drug target. For example, Paxlovid (PF-7321332) from Pfizer is an active site inhibitor of MPro. To better understand the enzymatic properties of MPro and provide mechanistic insights of how the drug disrupts the enzymatic cycle of the protease, we aim to develop a new single-molecule assay to watch individual MPro enzymes process their substrates, one molecule at a time. In the first 6 months of this project, we have established a protocol to fluorescently label Mpro proteins for single-molecule observations. We have also successfully monitored the dimer-monomer equilibrium at the single-molecule level which validated the activity of the labeled enzyme. These progress set the stage to future single-molecule enzymology studies of MPro.
过去一年,我们在以下两方面取得了进展 a)相分离蛋白核蛋白在稀相中形成复合物。最近,发现液-液相分离驱动许多缺乏膜的细胞区室(也称为生物分子缩合物)的组装,并成为细胞生物学中出现的新范例。虽然大多数生物分子相分离的研究都集中在凝聚相,相对较少的是关于稀相。理论表明,在双组分相分离系统的稀相中形成稳定的复合物,影响相分离;然而,这些复合物尚未被实验询问。我们表明,这样的复合物确实存在,使用体外重建系统的相分离的细胞器,藻蛋白核,由纯化的蛋白质Rubisco和EPYC 1。应用荧光相关光谱(FCS)测量扩散系数,我们发现,在稀相或不存在冷凝物的情况下,形成复合物。这些复合物中的大多数恰好含有一个Rubisco分子。此外,我们开发了一个简单的分析模型,概括了实验结果,并提供了稀相组织的分子见解。因此,我们的研究结果表明,蛋白质复合物在稀相中的存在,这可能发挥重要作用的稳定性,动力学,和调节的冷凝物。 B)在Cas9全酶组装期间gRNA构象的单分子解剖。生物分子通过一系列功能状态的循环来执行其功能。为了更好地理解结构-功能关系,在功能状态的连续阶段探索结构是非常有趣的。我们最近使用ABEL-FRET平台在单分子水平上探测CRISPR RNA(crRNA)的3端结构,因为它组装成Cas9全酶。对于每一个分子,其组装状态是明确确定使用流体动力学分析和其3-端结构探测一对战略性放置的FRET染料。引人注目的是,我们在组装途径的每个阶段都发现了结构异质性和动力学,即crRNA,指导RNA(gRNA或crRNA-tracrRNA杂合体),Cas9-gRNA复合物和与底物DNA结合的Cas9-gRNA,突出了RNA结构多样性的重要性。目前的工作重点是使用RNA结构预测工具来生成与单分子FRET测量一致的结构模型,并设计Cas9全酶组装的合理途径。这项工作可能揭示Cas9-gRNA识别的基本生物物理原理 c)SARS-COV-2主要蛋白酶活性的单分子观点。SARS-COV-2的主要蛋白酶(MPro)是冠状病毒复制和繁殖所必需的。MPro作为同源二聚体存在,并且负责前体多蛋白内的大多数成熟裂解事件。由于其重要作用,MPro一直是一个重要的药物靶点。例如,来自Pfizer的Paxlovid(PF-7321332)是MPro的活性位点抑制剂。为了更好地了解MPro的酶特性,并提供药物如何破坏蛋白酶的酶循环的机制见解,我们的目标是开发一种新的单分子测定法,以观察单个MPro酶处理其底物,一次一个分子。在这个项目的前6个月,我们已经建立了一个协议,荧光标记Mpro蛋白的单分子观察。我们还成功地监测了单分子水平的二聚体-单体平衡,验证了标记酶的活性。这些进展为MPro的单分子酶学研究奠定了基础。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Detection of Change Points in Multichannel Single-Molecule Measurements.
  • DOI:
    10.1021/acs.jpcb.1c08869
  • 发表时间:
    2021-12-16
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Wilson, Hugh;Wang, Quan
  • 通讯作者:
    Wang, Quan
ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling.
ABEL-FRET:具有流体动力学分析的无束缚单分子 FRET。
  • DOI:
    10.1038/s41592-021-01173-9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Wilson,Hugh;Wang,Quan
  • 通讯作者:
    Wang,Quan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quan Wang其他文献

Low-voltage silicon chip/glass ring anodic bonding for MEMS device packaging and experimental evaluation of bonding quality
MEMS器件封装用低压硅片/玻璃环阳极键合及键合质量实验评价

Quan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quan Wang', 18)}}的其他基金

Single-molecule dynamics in solution with anti-Brownian trapping
具有反布朗捕获的溶液中的单分子动力学
  • 批准号:
    10697872
  • 财政年份:
  • 资助金额:
    $ 121.72万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 121.72万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了