Prions of Yeast and Anti-Prion Systems
酵母朊病毒和抗朊病毒系统
基本信息
- 批准号:10919386
- 负责人:
- 金额:$ 135.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmino Acid SequenceAmyloidAmyloidosisArchitectureBacterial InfectionsBinding ProteinsCarbonCellsComplexDNADefectDiphosphatesDisadvantagedDiseaseF-Box ProteinsFilamentFrequenciesGenerationsGenesGeneticGlutamate-Ammonia LigaseGlycerolGrowthHumanIn VitroInfectionInnate Immune SystemInositolLearningMammalsMediatingMinorityMitochondriaModelingMolecular ChaperonesMolecular ConformationMutagenesisMutationNational Institute of Diabetes and Digestive and Kidney DiseasesNatureNon-Insulin-Dependent Diabetes MellitusNormal CellParkinson DiseasePathogenicityPathologyPathway interactionsPolyphosphatesPreventionPrion DiseasesPrionsProcessProductionProtein ConformationProtein Structure InitiativeProteinsRibosomesScienceSonSourceStressStructureSystemTestingTimeVariantVirus DiseasesWorkYeastsamyloid formationamyloid structurebeta pleated sheetexpectationhuman diseasein vivomRNA Decaymulticatalytic endopeptidase complexmutantnext generation sequencingnon-prionoverexpressionpreventprion seedsprion-likeprotein protein interactionpyrophosphataserestorationsolid state nuclear magnetic resonancetranscription factorubiquitin-protein ligaseyeast prion
项目摘要
In 1994 we discovered prions (infectious proteins) infecting yeast (1) analogous to the transmissible spongiform encephalopathies of mammals. URE3 is a prion of Ure2p, and PSI+ is a prion of Sup35p (1,2), each an amyloid of the respective protein (reviewed in ref. 3). Our discovery showed that proteins can be genes. Unexpectedly, shuffling the prion domain amino acid sequence of Ure2p or Sup35p did not alter the ability of these domains to support prion formation, suggesting that the amyloid structure is parallel in-register (4). We showed by solid-state NMR (with Rob Tycko of NIDDK) that the infectious amyloids of Ure2p, Sup35p and Rnq1p are indeed folded in-register parallel beta sheets (5,6). From this architecture we explained how a given protein sequence can template its conformation, and thus how a protein can act as a gene (7). This is the first and only explanation that has been offered for the templating of protein conformation that is central to the prion phenomenon and amyloid diseases.
Prion-forming ability of Ure2p and Sup35p are not conserved among yeast and fungal species (8, 9), and the prion (amyloid)-forming parts of Ure2p and Sup35p have normal non-prion functions. PSI+ and URE3 are rare in wild strains (10,11) and most variants are toxic or even lethal, showing that these are diseases of yeast (12).
Overproducing Btn2p or Cur1p, acting with Hsp42, cures all variants of the URE3 prion, but normal levels of each cure nearly all URE3 prions except those with the highest seed number (13, 14). Btn2p cures by collecting Ure2p aggregates at a single locus (sequestration), increasing the likelihood that one of the progeny cells will not get any prion seeds and so be cured (13). These are antiprion systems. We find that overactive proteasomes prevent prion curing by Btn2 or Cur1 (15) and partially inactive proteasomes result in URE3 curing as a result of the dramatically elevated levels of Btn2 and Cur1 (16). We propose that proteasomes overwhelmed by denatured proteins in stress conditions automatically turn on the Btn2 and Cur1 systems to help in the clean-up.
The disaggregase Hsp104 is necessary for the propagation of all amyloid-based yeast prions, but cures PSI+ if overexpressed. We find that mutant Hsp104 specifically lacking the prion-curing activity generatates PSI+ 15x more often, and that most PSI+ variants isolated in the Hsp104 mutant are cured by restoration of normal levels of w.t. Hsp104, showing that this activity is an antiprion system (17).
We found Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5) is anti-prion for PSI+ (18). We showed that most PSI+ prions require 5PP-IP5 or related inositol polyphosphates for their propagation, and 1PP-IP5 has a prion-inhibiting action in the absence of the inositol-5 pyrophosphates (18).
We found that nonsense-mediated mRNA decay pathway components Upf1, Upf2 and Upf3, at normal expression levels, cure most PSI+ prions arising in their absence (19). The Upf proteins normally complex with Sup35p, and thereby block most PSI+ prion formation and cure most of those PSI+ prions arising in their absence (19). Upf1p blocks amyloid formation by Sup35p in vitro, and co-localizes with Sup35p aggregates in vivo in PSI+ cells. We infer that normal protein-protein interactions prevent the abnormal protein-protein interactions that produce prions.
We also find that ribosome-associated chaperones Ssb, Ssz1 and Zuo1, that insure proper folding of nascent proteins, cure most of the PSI+ prions arising in their absence (20). Mutation of any results in 15-fold elevated prion generation frequency.
Triple mutant ssz1 upf1 hsp104T160M cells produce PSI+ up to 5000-fold more often than wild type, but most prions arising are cured by replacing any one of the defective genes (21). Thus these antiprion systems act independently, and the real frequency of prions arising in normal cells is much higher than had been appreciated, but most variants arising are cured by these systems before they can be detected in the usual type of test.
We used transposon mutagenesis and next-generation sequencing to find proteins that prevent growth defects that would otherwise be produced by the URE3 prion (22). We found that Lug1p/Ylr352wp prevents a growth defect on non-fermentable carbon sources (e.g. glycerol) that is produced by the URE3 prion in the absence of Lug1p (22). This effect is suppressed by overproduction of Hap4p, a transcription factor promoting expression of mitochondrial-bound proteins. A defect in Gln1p (glutamine synthase) also suppress the growth defect of lug1 URE3 strains. This also identifies a new function for Ure2p. Lug1p is an F-box protein, a substrate-directing subunit of an E3 ubiquitin ligase. We also found that mutation of any of a wide array of chaperones results in a selective disadvantage for URE3 - carrying cells. Thus, cells act to limit the pathology produced on prion infection.
We recently identified 19 human proteins whose expression in yeast cures URE3 or PSI+ or both. We find that at least one such protein acts by impeding interaction of Hsp40s with Hsp70s in the process of Hsp104-catalyzed cleavage of prion amyloid filaments, a process essential for prion propagation.
Multiple systems prevent prion formation, cure most of the prions that do manage to arise, and limit the pathology from the few prions that evade the other systems. Just as we utilize humoral, cellular and innate immune systems to treat or cure or limit the damage from viral and bacterial infections, we suggest that these anti-prion systems will prove to be useful in treatment or prevention of prion/amyloid diseases of humans.
1. Wickner RB (1994) Science 264: 566 - 569.
2. Masison DC & Wickner RB (1995) Science 270: 93 - 95.
3. Wickner RB, Edskes HK, Ross ED, Pierce MM, Baxa U, Brachmann A & Shewmaker F (2004) Ann. Rev. Genetics 38: 681-707.
4. Ross ED, Minton AP & Wickner RB (2005) Nature Cell Biol. 7: 1039-1044.
5. Shewmaker F, Wickner RB & Tycko R (2006) PNAS 103: 19754 - 19759.
6. Gorkovskiy A, Thurber KR, Tycko R, Wickner RB (2014) PNAS 111:E4615-22.
7. Wickner RB, Edskes HK, Shewmaker F, Nakayashiki T 2007 Nat. Rev. Microbiol. 5: 611-618.
8. Edskes HK, Engel A, McCann LM, Brachmann A, Tsai H-F, Wickner RB (2011) Genetics 188:81 90.
9. Edskes HE, Khamar HJ, Winchester C-L, Greenler AJ, Zhou A, McGlinchey RP, Gorkovskiy A, Wickner RB (2014) Genetics, 198: 605-616.
10. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (2005) PNAS 102:10575-80.
11. Kelly AC, Shewmaker FP, Kryndushkin D, Wickner RB (2012) PNAS 109: E2683 - E2690.
12. McGlinchey R, Kryndushkin D, Wickner RB (2011) PNAS 108:5337 - 41.
13. Kryndushkin D, Shewmaker FP, Wickner RB (2008) EMBO J. 27: 2725 - 2735.
14. Wickner RB, Bezsonov E Bateman DA (2014) PNAS 111: E2711-20.
15. Bezsonov EE, Edskes HK, Wickner RB (2021) Genetics 217: doi: 10.1093/genetics/iyab013.
16. Edskes HK, Stroobant EE, DeWilde M, Bezsonov EE, Wickner RB (2021) Genetics 218: doi:10.1093/genetics/iyab037
17. Gorkovskiy A, Reidy M, Masison DC, Wickner RB (2017) PNAS 114: E4193-E4202.
18. Wickner RB, Kelly AC, Bezsonov EE, Edskes HE (2017) 114: E8402-E8410.
19. Son M, Wickner RB (2018) PNAS 115: E1184-E1193.
20. Son M, Wickner RB (2020) PNAS 117: 26298-26306.
21. Son M, Wickner RB (2022) PNAS 119: e2205500119.
22. Edskes HK, Mukhamedova M, Edskes BK, Wickner RB (2018) Genetics 209:789-800.
1994年,我们发现朊病毒(感染性蛋白)感染酵母菌(1),类似于哺乳动物的传染性海绵状脑病。URE3是Ure2p的一个朊病毒,而PSI+是Sup35p的一个朊病毒(1,2),它们都是各自蛋白的淀粉样蛋白(参见参考文献3)。我们的发现表明蛋白质可以是基因。出乎意料的是,重组Ure2p或Sup35p的朊病毒结构域氨基酸序列并没有改变这些结构域支持朊病毒形成的能力,这表明淀粉样蛋白结构是平行的(4)。我们通过固态核磁共振(与NIDDK的Rob Tycko一起)表明,Ure2p, Sup35p和Rnq1p的感染性淀粉样蛋白确实折叠在寄存器平行的β片上(5,6)。从这个结构中,我们解释了一个给定的蛋白质序列如何模板它的构象,从而一个蛋白质如何作为一个基因(7)。这是对朊病毒现象和淀粉样蛋白疾病的核心蛋白质构象模板的第一个也是唯一的解释。
项目成果
期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amyloid of the Candida albicans Ure2p prion domain is infectious and has an in-register parallel β-sheet structure.
白色念珠菌URE2P Prion结构域的淀粉样蛋白具有感染性,并具有并行的平行β-折叠结构。
- DOI:10.1021/bi200142x
- 发表时间:2011-07-12
- 期刊:
- 影响因子:2.9
- 作者:Engel A;Shewmaker F;Edskes HK;Dyda F;Wickner RB
- 通讯作者:Wickner RB
Yeast Prions Compared to Functional Prions and Amyloids.
- DOI:10.1016/j.jmb.2018.04.022
- 发表时间:2018-10
- 期刊:
- 影响因子:5.6
- 作者:R. Wickner;H. Edskes;Moonil Son;E. Bezsonov;Morgan DeWilde;Mathieu Ducatez
- 通讯作者:R. Wickner;H. Edskes;Moonil Son;E. Bezsonov;Morgan DeWilde;Mathieu Ducatez
Prion amyloid structure explains templating: how proteins can be genes.
- DOI:10.1111/j.1567-1364.2010.00666.x
- 发表时间:2010-12
- 期刊:
- 影响因子:3.2
- 作者:Wickner RB;Shewmaker F;Edskes H;Kryndushkin D;Nemecek J;McGlinchey R;Bateman D;Winchester CL
- 通讯作者:Winchester CL
Yeast and Fungal Prions.
- DOI:10.1101/cshperspect.a023531
- 发表时间:2016-09
- 期刊:
- 影响因子:7.2
- 作者:R. Wickner
- 通讯作者:R. Wickner
Prions are affected by evolution at two levels.
- DOI:10.1007/s00018-015-2109-6
- 发表时间:2016-03
- 期刊:
- 影响因子:0
- 作者:Wickner RB;Kelly AC
- 通讯作者:Kelly AC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reed B. WICKNER其他文献
Reed B. WICKNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reed B. WICKNER', 18)}}的其他基金
Thermodynamic and kinetic studies of macromolec structure and enzymic mechanisms
大分子结构和酶机制的热力学和动力学研究
- 批准号:
9356061 - 财政年份:
- 资助金额:
$ 135.78万 - 项目类别:
Thermodynamic and kinetic studies of macromolec structure and enzymic mechanisms
大分子结构和酶机制的热力学和动力学研究
- 批准号:
8939507 - 财政年份:
- 资助金额:
$ 135.78万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 135.78万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 135.78万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 135.78万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 135.78万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 135.78万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 135.78万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 135.78万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 135.78万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 135.78万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 135.78万 - 项目类别:














{{item.name}}会员




