Identifying Neural Substrates of Behavior in Drosophila Melanogaster

识别果蝇行为的神经基础

基本信息

项目摘要

Insect ecdysis sequences represent a simple, robust, and tractable model for studying the neuromodulatory mechanisms that govern behavior. Because initiation of an ecdysis sequence involves a profound shift in behavioral priorities, study of these sequences offers the opportunity to understand the neuromodulatory mechanisms that govern changes in behavioral state. In addition, because ecdysis behaviors are inherently sequential, they permit the systematic investigation of how motor programs are assembled and serially executed by the nervous system. Finally, the study of ecdysis sequences promises insight into how neural circuits can be variably configured to generate immensely different behaviors. In Drosophila, for example, the motor sequences performed at pupal and adult ecdysis are completely different. This is because of the profound differences in the pupal and adult body plans. Despite these anatomical differences, the two behavioral sequences are governed by a common set of neuromodulatory/hormonal inputs. By analogy to computing, these inputs can be regarded as instructions written in a higher programming language that are then compiled into different outputs. Exposing the mechanisms of neural compilation in ecdysis is likely to deeply inform our understanding of how neuromodulators contribute to neurocomputation by reconfiguring the activity of neural networks. To investigate these issues, my laboratory seeks to elucidate the circuitry that governs both the pupal and adult ecdysis sequences in Drosophila. Our efforts over the last year have been more or less evenly divided between study of these two circuits. With regard to pupal ecdysis, we have continued to follow up on our description of the pupal ecdysis sequence at single muscle resolution (Elliott et al., eLife 2021;10:e68656). The motivation for that study, which to our knowledge constituted the first muscle-level description of a complicated behavioral sequence in any animal, was to facilitate a similar investigation of the neuronal activity that drives pupal ecdysis. This is in line with the laboratory's central interest in understanding how a simple hormonal signal (i.e. ETH) is transformed in the brain into the execution of a specific motor sequence characterizing a particular behavioral state. To study the patterns of neuronal activity that transform the ETH signal into a pupal ecdysis sequence, we are using the excised pupal brain preparation that we and others have previously shown exhibits fictive pupal ecdysis activity in response to ETH (Diao et al., 2017, doi.org/10.7554/eLife.29797). We are currently using a custom-built light-sheet microscope to establish the patterns of ETH-evoked motor neuron activity in the excised brain and compare them with the previously established patterns of pupal ecdysis muscle activity. We will then use the motor neuron activity patterns to identify the pre-motor neurons likely to drive them based on their patterns of activity. Using correlated activity and functional manipulations as our guide, we will identify neurons at progressively higher levels that participate in generating the movements of the pupal ecdysis sequence, up to and including the neurons that respond to ETH. Adult ecdysis immediately follows metamorphosis and consists of two major behavioral phases. In the first, the animal extricates itself from the puparium and in the second, it stops to expand and harden its wings. Each of these phases involves the execution of specific motor patterns that are under hormonal control. Over the past year, we laid the groundwork for identifying the hormonal targets mediating eclosion by characterizing the patterns of muscle activity underlying that process. These patterns show selective sensitivity to distinct hormones indicating the multifactorial regulation eclosion. Second, we have continued to investigate the dual roles of the hormone Bursicon in wing expansion. Our previous work had shown that Bursicon released from a single pair of neurons (called the BSEG) was important in helping flies decide whether to expand their wings after adult ecdysis depending on environmental conditions. Expanding under adverse conditions risks permanently damaging the wings and flies will generally delay wing expansion and seek better conditions rather than risk damage. Using the Trojan exon technology that we developed in 2015 (Diao et al., 2015, Cell Rep. 10:1410-21) to investigate targets of Bursicon, we established that a key component of the decision-making circuitry is a set of cholinergic neurons that express the Bursicon receptor. These neurons signal back to the BSEG via a positive feedback loop to initiate and maintain wing expansion in an environmentally sensitive manner. Our efforts over the last year have focused on resolving the minimal subset of neurons in the feedback loop using a variety of directed and stochastic methods for restricting neuronal expression. In technology development, my laboratory has continued to refine methods for targeted transgene expression that exploit the use of split inteins. In collaboration with the Perrimon lab at Harvard, we have adapted split inteins for use in a modified version of the Split Gal4 method introduced by my laboratory in 2006 (Neuron 52:425-436). The modified version has the advantage of being compatible with the temperature-sensitive Gal4 inhibitor tsGal80, and therefore permits temporal control of transcriptional activity of the new Split Gal4 system. In addition, we developed a split intein version of the drug-inducible GeneSwitch molecule, which similarly permits Gal4-mediated transcription of downstream targets. Our split intein GeneSwitch thus provides a second method for exercising temporal control of a split transcription factor. This work is described in a recently published paper in PNAS (https://doi.org/10.1073/pnas.2304730120). In addition, we are also using split inteins to modify our Trojan exon method. That method necessarily truncates the allele of the gene into which the Trojan exon is inserted, essentially cutting the encoded protein in half. To obviate this, we have devised a strategy in which split inteins are used to re-unite the two halves of the truncated protein thereby restoring its function. This method is proving useful in creating new Split Gal4 drivers to identify the cholinergic feedback neurons described above. More generally, we expect that it will be a valuable tool to the Drosophila research community by extending the range of problems that can be tackled using the Trojan exon technique. A manuscript is currently in preparation. In summary, during the last year we have advanced research on the principal questions of interest to the laboratory. At the same time, we have continued to develop technology that supports not only our own circuit mapping efforts, but also those of other researchers. As we use these tools to extend and refine our analysis of the circuitry underlying ecdysis sequences, our work should provide insight into the principles that govern the development and function of behavioral circuits in all organisms, including humans.

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural and hormonal control of postecdysial behaviors in insects.
  • DOI:
    10.1146/annurev-ento-011613-162028
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    23.8
  • 作者:
    White BH;Ewer J
  • 通讯作者:
    Ewer J
Command and compensation in a neuromodulatory decision network.
Enteric neurons increase maternal food intake during reproduction.
  • DOI:
    10.1038/s41586-020-2866-8
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Hadjieconomou D;King G;Gaspar P;Mineo A;Blackie L;Ameku T;Studd C;de Mendoza A;Diao F;White BH;Brown AEX;Plaçais PY;Préat T;Miguel-Aliaga I
  • 通讯作者:
    Miguel-Aliaga I
Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death.
Neurotrapping: cellular screens to identify the neural substrates of behavior in Drosophila.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin H White其他文献

Benjamin H White的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin H White', 18)}}的其他基金

Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    10703918
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    9357278
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila
识别果蝇行为的神经基础
  • 批准号:
    6982718
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    8556937
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    7969372
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    10266594
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila
识别果蝇行为的神经基础
  • 批准号:
    7136784
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    8939969
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    8158104
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:
Identifying Neural Substrates of Behavior in Drosophila Melanogaster
识别果蝇行为的神经基础
  • 批准号:
    8342135
  • 财政年份:
  • 资助金额:
    $ 233.43万
  • 项目类别:

相似国自然基金

移动互联网背景下中国成人静态行为问卷的构建与初步应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于成人学习理论的养老机构从业人员急救培训方案构建与实证研究
  • 批准号:
    2025JJ81154
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 i-PARIHS 循证理论的成人气管切开患者气道康复护理最佳证据与临床应用
  • 批准号:
    GDHLYJYQ202416
  • 批准年份:
    2025
  • 资助金额:
    0.1 万元
  • 项目类别:
    省市级项目
基于mEMA的成人烟雾病患者心理特征变化轨迹与健康行为的相关性研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
成人ICU以家庭为中心查房方案的构建及试点运行效果评价
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HEMA抑制乳牙/成人牙髓干细胞分化的表观遗传学机制研究
  • 批准号:
    JCZRYB202500204
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
劳动技能视角下发展人工智能与生成人才红利的协同机制与路径研究
  • 批准号:
    QN25G030028
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
接力组装策略下的胶原异质纤维微结构的可控构筑与功能集成人工角膜研制
  • 批准号:
    Z25E030005
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于床旁交互系统的骨科成人手术患者智能化疼痛自我管理平台的构建及效果验证
  • 批准号:
    2025JJ60786
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
血流限制训练联合限时进食对肥胖成人微循环功能的影响及作用机制研究
  • 批准号:
    JCZRLH202500954
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

成人T細胞白血病に対するCRISPR-Cas13を用いた遺伝子治療戦略の開発
使用 CRISPR-Cas13 开发成人 T 细胞白血病基因治疗策略
  • 批准号:
    24K11570
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
成人末梢血(献血血液)に含まれる造血幹細胞を用いた血管再生医療の実現
利用成人末梢血(捐献血)中含有的造血干细胞实现血管再生医学
  • 批准号:
    24K10613
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
成人診療科における小児期発症慢性疾患患者への成人移行支援ガイドラインの作成
制定指南,支持成人临床部门患有儿童期慢性疾病的患者过渡到成年
  • 批准号:
    24K13986
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
成人期前期におけるBig Fiveパーソナリティの年齢変化と社会的投資の原則の検討
审视大五人格的年龄变化和成年早期社会投资的原则
  • 批准号:
    24K16817
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
成人T細胞白血病リンパ腫におけるフマル酸ジメチルの効果と作用機序を明らかにする。
阐明富马酸二甲酯对成人T细胞白血病-淋巴瘤的作用及作用机制。
  • 批准号:
    24K18550
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
青少年期から成人期への移行についての追跡的研究―地方中核市における第二波調査
青春期向成年过渡的追踪研究——某区域核心城市的第二波调查
  • 批准号:
    23K22251
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
成人に必要な新たなコンピテンシーの確立と調整学習を基にしたその育成手法の開発
建立成人所需的新能力,并制定基于协调学习的发展方法
  • 批准号:
    23K22319
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
縦断研究による胎児期から成人までの個体・環境要因と青年期の社会的行動との関係解明
通过纵向研究阐明胎儿期至成年期个体/环境因素与青春期社会行为的关系
  • 批准号:
    23K25735
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
成人期ADHDに対する客観的診断補助システムの開発-視線追跡装置を用いて-
开发成人多动症客观诊断辅助系统 - 使用眼球追踪设备 -
  • 批准号:
    24K10706
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
成人吃音者における感覚運動制御機序の解明と臨床応用に関する研究
成人口吃者感觉运动控制机制的阐明及临床应用研究
  • 批准号:
    24K14304
  • 财政年份:
    2024
  • 资助金额:
    $ 233.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了