MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
基本信息
- 批准号:10953177
- 负责人:
- 金额:$ 38.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Despite recent experimental advances in single cell techniques and a concurrent development in
statistical methods, our ability to predict single cell dynamics and identify the biochemical
processes that dictate cell-to-cell variability remains rudimentary. We have identified the key
roadblock in achieving mechanistic understanding of single cell behavior: we do not have
computational methods to integrate single cell data with mechanistic signaling network models.
Building upon our previous work and leveraging cutting-edge developments in neural networks,
we propose a comprehensive research program to bridge this gap.
The central problem in integration of single cell data with mechanistic models is that even large-
scale data only partially constrain the models, leading to a family of models that fit the data equally
well. How do we then choose from the models? Our strategy is to use the Maximum Entropy (Max
Ent) approach which infers the least complex model: one that does not disfavor any outcome
unless warranted by the data and the mechanistic constraints. Over the past decade, we have
pioneered the novel use of Max Ent to model dynamics of biological networks. In the next five
years, we plan to have two main research goals; (1) to build and validate the computational
architecture required to integrate single cell data with models and (2) in close collaboration with
experimentalists, use the developed framework to study the variability in two important
pathways; the mitogen activated protein kinase (MAPK) pathway and mechanotransduction. We
envision that this framework will be indispensable in exploring the mechanistic origins of cell-to-
cell variability across a broad range of signaling networks. Notably, under-constrained models are
ubiquitous in many areas of quantitative biology, including two of the laboratory’s other research
foci: metabolism and microbiome dynamics. The program proposed here will directly benefit
integration of large-scale data with mechanistic models and a principled exploration of otherwise
hidden hypotheses.
项目摘要/摘要
尽管最近在单细胞技术方面取得了进步和同时发展
统计方法,我们预测单细胞动力学并识别生化的能力
决定细胞对细胞变异性的过程仍然是基本的。我们已经确定了钥匙
在实现对单细胞行为的机械理解方面的障碍:我们没有
将单个单元数据与机械信号网络模型集成的计算方法。
基于我们以前的工作并利用神经网络中的尖端发展,
我们提出了一项综合研究计划,以弥合这一差距。
将单细胞数据与机械模型集成的核心问题是,即使很大
比例数据仅部分约束模型,导致一个模型家族,该系列适合数据
出色地。然后,我们如何从模型中选择?我们的策略是使用最大熵(最大
介绍最不复杂模型的方法:一种不影响任何结果的方法
除非数据和机械约束保证。在过去的十年中,我们有
开创了最大用户对生物网络动力学建模的新颖使用。在接下来的五个
多年来,我们计划实现两个主要的研究目标。 (1)构建和验证计算
将单元数据与模型集成到(2)
实验者,使用开发的框架研究两个重要的变异性
途径;有丝分裂原激活的蛋白激酶(MAPK)途径和机械转导。我们
设想该框架在探索细胞到细胞的机械起源时必不可少
跨广泛的信号网络的细胞变异性。值得注意的是,受约束的模型是
在许多定量生物学领域,无处不在,包括实验室的其他两项研究
焦点:代谢和微生物组动力学。这里提出的计划将直接受益
大规模数据与机械模型的集成以及否则的主要探索
隐藏的假设。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GENERALIST: A latent space based generative model for protein sequence families.
- DOI:10.1371/journal.pcbi.1011655
- 发表时间:2023-11
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
EMBED: Essential MicroBiomE Dynamics, a dimensionality reduction approach for longitudinal microbiome studies.
- DOI:10.1038/s41540-023-00285-6
- 发表时间:2023-06-20
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purushottam Dixit其他文献
Purushottam Dixit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purushottam Dixit', 18)}}的其他基金
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10680431 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10273855 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别:
相似海外基金
A principled generalization of the maximum entropy principle for non-Shannon systems
非香农系统最大熵原理的原则概括
- 批准号:
23K16855 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Maximum Entropy Reinforcement Learning
最大熵强化学习
- 批准号:
573997-2022 - 财政年份:2022
- 资助金额:
$ 38.07万 - 项目类别:
University Undergraduate Student Research Awards
AI and robotics - applying the maximum entropy framework to real-world robotics tasks
人工智能和机器人——将最大熵框架应用于现实世界的机器人任务
- 批准号:
2745856 - 财政年份:2022
- 资助金额:
$ 38.07万 - 项目类别:
Studentship
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10680431 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
- 批准号:
10273855 - 财政年份:2021
- 资助金额:
$ 38.07万 - 项目类别: