Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
基本信息
- 批准号:10983614
- 负责人:
- 金额:$ 45.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Neurosurgical therapy of refractory epilepsy requires accurate localization of seizure onset zone (SOZ). In clinical
practice, intracranial EEG (iEEG) is recorded in the epilepsy monitoring unit (EMU) over many days where
multiple seizures are recorded to provide information to localize the SOZ. The prolonged monitoring in the EMU
adds to the risk of complications and can include intracranial bleeding and potentially death. Recently, high
frequency oscillations (HFO) of iEEG between 80 to 500 Hz are highly valued as a promising clinical biomarker
for epilepsy. HFOs are believed to be clinically significant, and thus could be used for SOZ localization. However,
HFOs can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or
frequency, pathological HFOs are indistinguishable from physiological ones, which limit their application in
epilepsy pre-surgical planning. In this proposal, to the best of our knowledge, we show of a recurrent waveform
pattern that distinguishes pathological HFOs from physiological ones. In particular, we observed that the SOZ
generates repeatedly a set of stereotyped HFO waveforms whereas the HFOs from nonepileptic regions were
irregular in their waveform morphology. Based on these observations, using computational tools built on recent
advances in sparse coding and unsupervised machine learning techniques, we propose to detect these
stereotyped recurrent HFO waveform patterns directly from the continuous iEEG data of adult and pediatric
patients and test their prognostic value by correlating the spatial distribution of detected events to clinical findings
such as SOZ, resection zone and seizure freedom. We hypothesize that accurate detection of pathologic HFOs
in brief iEEG recordings can identify the SOZ and eliminate the necessity of prolonged EMU monitoring and
reduce the associated risks. With these motivations, in this project an interdisciplinary team composed of
biomedical engineers, epileptologists and neurosurgeons will work together to develop and test novel
computational tools to detect stereotyped HFOs and its subtypes in large iEEG datasets recorded with clinical
electrodes. Developed algorithms and iEEG data will be shared with the research community to contribute to the
reproducible research and help other research groups to develop novel methods. The results of this study will
be essential for achieving our group's long term goal of developing an online neural signal processing system
for the rapid and accurate identification of SOZ with brief invasive recording.
项目摘要
难治性癫痫的神经外科治疗需要准确定位癫痫发作区(SOZ)。临床
在实践中,颅内EEG(iEEG)被记录在癫痫监测单元(EMU)中许多天,其中
记录多次缉获以提供定位SOZ的信息。EMU中的长时间监测
增加了并发症的风险,可能包括颅内出血和潜在的死亡。近日,高
iEEG在80至500 Hz之间的频率振荡(HFO)作为一种有前途的临床生物标志物受到高度重视
治疗癫痫HFO被认为具有临床意义,因此可用于SOZ定位。然而,在这方面,
HFO也可以从正常和非癫痫脑结构中记录。当仅由速率或
频率,病理性HFO与生理性HFO难以区分,这限制了它们在临床上的应用。
癫痫手术前计划。在这个建议中,据我们所知,我们显示了一个经常性的波形
这是区分病理性HFO和生理性HFO的模式。特别是,我们观察到,
重复产生一组定型的HFO波形,而来自非癫痫区域的HFO
其波形形态不规则。基于这些观察,使用基于最近的计算工具,
稀疏编码和无监督机器学习技术的进步,我们建议检测这些
直接来自成人和儿童连续iEEG数据的定型复发性HFO波形模式
并通过将检测到的事件的空间分布与临床发现相关联来测试其预后价值
例如SOZ、切除区和癫痫自由度。我们假设病理性HFO的准确检测
简而言之,iEEG记录可以识别SOZ并消除长时间EMU监测的必要性,
降低相关风险。有了这些动机,在这个项目中,一个由以下人员组成的跨学科团队
生物医学工程师、癫痫病学家和神经外科医生将共同努力,开发和测试新的
计算工具,以检测临床记录的大型iEEG数据集中的定型HFO及其亚型
个电极开发的算法和iEEG数据将与研究界共享,以促进
可重复的研究,并帮助其他研究小组开发新的方法。这项研究的结果将
对于实现我们小组开发在线神经信号处理系统的长期目标至关重要
通过简单的侵入性记录快速准确地识别SOZ。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised machine learning can delineate central sulcus by using the spatiotemporal characteristic of somatosensory evoked potentials.
- DOI:10.1088/1741-2552/abf68a
- 发表时间:2021-04-29
- 期刊:
- 影响因子:4
- 作者:Asman P;Prabhu S;Bastos D;Tummala S;Bhavsar S;McHugh TM;Ince NF
- 通讯作者:Ince NF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuri Firat Ince其他文献
Nuri Firat Ince的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuri Firat Ince', 18)}}的其他基金
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
- 批准号:
10290984 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
- 批准号:
10478109 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
9802783 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10388243 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
9974350 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10609889 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
相似海外基金
Hedgehog Signaling Coordinates Stochastic and Stereotyped Patterns in the Drosophila Eye
刺猬信号协调果蝇眼睛中的随机和刻板模式
- 批准号:
10538065 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Transcriptional basis of stereotyped neural architectures
刻板神经结构的转录基础
- 批准号:
10525865 - 财政年份:2022
- 资助金额:
$ 45.92万 - 项目类别:
Transcriptional basis of stereotyped neural architectures
刻板神经结构的转录基础
- 批准号:
10672300 - 财政年份:2022
- 资助金额:
$ 45.92万 - 项目类别:
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
- 批准号:
10290984 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
- 批准号:
10478109 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
Doctoral Dissertation Research: Does Speaking Out Against Harassment Lead Women to be Negatively Stereotyped at Work?
博士论文研究:公开反对骚扰是否会导致女性在工作中受到负面刻板印象?
- 批准号:
2001736 - 财政年份:2020
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
9802783 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10388243 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
9974350 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10609889 - 财政年份:2019
- 资助金额:
$ 45.92万 - 项目类别: