Mitochondrial stress in liver function and dysfunction
线粒体应激对肝功能和功能障碍的影响
基本信息
- 批准号:10909565
- 负责人:
- 金额:$ 43.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsCell SurvivalCessation of lifeChimeric ProteinsComplexCrista ampullarisDataDevelopmentDrug Metabolic DetoxicationDrug ModelingsEnvironmentEukaryotic Initiation Factor-2Exposure toGoalsGuanosine Triphosphate PhosphohydrolasesHealthHomeostasisImpairmentInjuryInner mitochondrial membraneInterruptionKnock-outKnockout MiceLiverLiver DysfunctionLiver MitochondriaLiver diseasesMediatingMembraneMetabolicMetabolismMitochondriaOptic atrophy 1OrganOxidative PhosphorylationPharmaceutical PreparationsPhosphorylationPredispositionProcessPropertyProteinsRecoveryRegenerative capacityRegulationRiskRoleStressStructureSystemTestingTimeTissuesToxinTranslationsacetaminophen overdoseattenuationbiological adaptation to stressdesigndrug induced liver injuryfeasibility testingfunctional disabilityknockout geneliver functionliver injuryliver preservationmitochondrial dysfunctionnovelnovel strategiesnovel therapeutic interventionoligomycin sensitivity-conferring proteinoperationpreservationpreventprotein functionresiliencerespiratoryresponsetranscription factor
项目摘要
Project Summary
The liver is responsible for the multitude of processes, notably the metabolic homeostasis and detoxification.
Mitochondria are critical for the metabolic function of the liver and, thus, mitochondrial dysfunction is a major
cause for liver diseases. As the liver is constantly exposed to harmful substances from metabolism and drug
processing, liver mitochondria are especially susceptible to functional impairment. We propose that maintaining
functional mitochondria under the stressful environment will be a key to the long-term preservation of liver health.
The mitochondrial fusion protein optic atrophy 1 (OPA1) is essential for proper function of mitochondria, and the
OPA1 gene knockout (KO) in major organs impairs mitochondrial energetics and causes animal death. However,
we observed that, despite the important role of mitochondria in the liver, liver-specific OPA1-KO mice are healthy
and maintain normal mitochondrial and liver functions. Liver is a resilient organ that has high regenerative
capacity after injury. While OPA1-KO livers do not show any injury, we found that OPA1 KO induces a robust
and efficient integrated stress response (ISR) to preserve liver function, indicating that the ISR is another
mechanism of liver resiliency. These observations suggest that the liver successfully handles the stress induced
by OPA1 KO, providing the important experimental system for mechanistic understanding of the ISR as the
mechanism of liver resiliency. In this proposal, we will elucidate the OPA1 function in the liver, define the
mechanism of how liver handles the mitochondrial stress evoked by the lack of OPA1 function, and test the
feasibility of utilizing the liver ISR for a protective strategy in drug-induced liver injury. Our preliminary data
indicate that the liver has a unique mechanism for ISR through a novel regulation of the critical transcription
factor ATF4. We also discovered a new role of OPA1 as an assembly factor for respiratory complex V, and found
that accumulation of assembly intermediates of complex V evokes mitochondrial stress for the ISR induction. In
this proposal, therefore, we will test our Central Hypothesis that OPA1 is a novel assembly factor for the
respiratory complex V, and its absence in the liver induces the ISR, which prevents liver injury and serves as a
mechanism of the liver resiliency. We will test this hypothesis by three specific aims: (1) to define the unique
mechanism regulating ATF4 in the liver ISR induced by OPA1 KO, (2) to elucidate the new role of OPA1 as a
complex V assembly factor, and (3) to test the liver ISR as a mechanism of liver resiliency by using the
acetaminophen overdose as a model for drug-induced liver injury. Completion of the proposed studies will
generate a new paradigm for the mechanisms of the liver ISR and OPA1 function, and provide scientific basis
for a new therapeutic strategy to decrease liver diseases.
项目摘要
肝脏负责许多过程,特别是代谢动态平衡和解毒。
线粒体对肝脏的新陈代谢功能至关重要,因此,线粒体功能障碍是主要的
导致肝病的原因。因为肝脏经常暴露在代谢和药物的有害物质中
在加工过程中,肝脏线粒体特别容易受到功能损伤的影响。我们建议保持
应激环境下的功能性线粒体将是长期保存肝脏健康的关键。
线粒体融合蛋白视神经萎缩1(OPA1)是线粒体正常功能所必需的,而
OPA1基因敲除(KO)在主要器官损伤线粒体能量学,导致动物死亡。然而,
我们观察到,尽管线粒体在肝脏中起着重要作用,但肝脏特异的OPA1-KO小鼠是健康的
并维持正常的线粒体和肝脏功能。肝脏是一个有弹性的器官,具有高度的再生性。
受伤后的能力。虽然OPA1-KO肝脏没有表现出任何损伤,但我们发现OPA1-KO诱导了强大的
和有效的综合应激反应(ISR)来保护肝功能,表明ISR是另一种
肝脏回弹的机制。这些观察表明,肝脏成功地处理了由
由OPA1 KO提出,为从机理上理解ISR提供了重要的实验系统
肝脏回弹的机制。在这个提案中,我们将阐明OPA1在肝脏中的功能,定义
肝脏如何处理由OPA1功能缺失引起的线粒体应激,并测试
利用肝脏ISR作为药物性肝损伤的保护策略的可行性。我们的初步数据
提示肝脏通过一种新的关键转录调控机制对ISR具有独特的作用机制
因子ATF4。我们还发现了OPA1作为呼吸复合体V的组装因子的新作用,并发现
复合体V的组装中间产物的积累引起线粒体应激,以诱导ISR。在……里面
因此,这一提议将检验我们的中心假设,即OPA1是一种新的
呼吸复合体V及其在肝脏中的缺失可诱导ISR,从而防止肝脏损伤,并作为一种
肝脏回弹的机制。我们将通过三个具体目标来检验这一假设:(1)定义唯一的
OPA1 KO诱导的肝脏ISR中ATF4的调节机制,(2)阐明OPA1作为一种新的
复杂的V装配因子,和(3)测试肝脏ISR作为肝脏弹性的机制
醋氨酚过量作为药物性肝损伤模型的研究。建议的研究完成后,
为肝脏ISR和OPA1功能的机制建立新的范式,并提供科学依据
寻找一种新的治疗策略来减少肝脏疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiqin Chen其他文献
Weiqin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiqin Chen', 18)}}的其他基金
Novel Posttranslational Modifications in Adipose Biology
脂肪生物学中的新型翻译后修饰
- 批准号:
10780577 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
Novel Role of Bscl2 in Cardiac Substrate Metabolism and Function
Bscl2 在心脏底物代谢和功能中的新作用
- 批准号:
9242050 - 财政年份:2016
- 资助金额:
$ 43.89万 - 项目类别:
Novel Role of Bscl2 in Cardiac Substrate Metabolism and Function
Bscl2 在心脏底物代谢和功能中的新作用
- 批准号:
10737113 - 财政年份:2016
- 资助金额:
$ 43.89万 - 项目类别:
相似海外基金
Anastasis: A Novel Cell Survival Mechanism
Anastasis:一种新的细胞生存机制
- 批准号:
10713750 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
Polo-like kinase 1 and sphingosine-1-phosphate circuitry enhances TSC-mutant cell survival
Polo 样激酶 1 和 1-磷酸鞘氨醇电路可增强 TSC 突变细胞的存活
- 批准号:
10915745 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
Contribution of a novel nuclear stress response to the promotion of cell survival
新型核应激反应对促进细胞存活的贡献
- 批准号:
478214 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
Operating Grants
Identification of the molecular regulation between cell survival and cell death in response to infection induced inflammasome activation.
识别响应感染诱导的炎症小体激活的细胞存活和细胞死亡之间的分子调节。
- 批准号:
10782349 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
Okazaki fragment maturation: mutagenesis and cell survival
冈崎片段成熟:诱变和细胞存活
- 批准号:
10636417 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
PIP5K1A is a novel mutant KRAS effector and essential for pancreatic cancer cell survival
PIP5K1A 是一种新型突变型 KRAS 效应子,对于胰腺癌细胞的生存至关重要
- 批准号:
10666257 - 财政年份:2023
- 资助金额:
$ 43.89万 - 项目类别:
Cell Signaling Pathways in Triple Negative Breast Cancer: Effects on Stemness Cell, Cell Survival, and The Tumor Micorenvironment
三阴性乳腺癌中的细胞信号传导途径:对干细胞、细胞存活和肿瘤微环境的影响
- 批准号:
473881 - 财政年份:2022
- 资助金额:
$ 43.89万 - 项目类别:
Miscellaneous Programs
Regulatory mechanisms of the cancer cell survival triggered by intracellular sodium pump present in the vesicles
囊泡中细胞内钠泵触发癌细胞存活的调节机制
- 批准号:
22H02801 - 财政年份:2022
- 资助金额:
$ 43.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The role and regulation of cell survival in uterine functions.
细胞存活在子宫功能中的作用和调节。
- 批准号:
RGPIN-2019-06151 - 财政年份:2022
- 资助金额:
$ 43.89万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms promoting cell survival to heat waves.
促进细胞在热浪中存活的机制。
- 批准号:
573552-2022 - 财政年份:2022
- 资助金额:
$ 43.89万 - 项目类别:
University Undergraduate Student Research Awards