Helping to End Addiction Long-term (HEAL): Induced Pluripotent Stem Cell (iPSC)-Derived Cell Types for Pain, Addiction and Overdose

帮助长期戒除成瘾 (HEAL):诱导多能干细胞 (iPSC) 衍生的细胞类型可治疗疼痛、成瘾和药物过量

基本信息

项目摘要

Developing iPSC-derived Satellite Glial Cells for Drug Development Peripheral neuropathy (PN) is a common cause of neuropathic pain, often requiring opioid use in a subset of patients. Although causes of PN vary, it is relatively common in patients with certain common autoimmune conditions such as Sjogren syndrome (SS) and systemic lupus erythematosus (SLE). A novel autoantibody associated with neuropathic pain and PN in Sjogrens disease patients has been identified. Notably, this autoantibody was directed against a protein in satellite glial cells (SGC) in the dorsal root ganglia (DRG). This research project will develop SGCs from human iPSCs to be used in mechanistic studies as well as a tool for screening additional patients for novel autoantigens that may play a role in neuropathic pain. Thus far SCTL has generated scRNA-Seq data from rodent DRGs to identify additional developmental markers of SGCs, which overall represents an understudied cell type. Sub-clustering analysis of the satellite glia and Schwann cell cluster identified cellular subtypes and dynamics of changes over time. Additionally, slingshot analysis revealed a plausible developmental trajectory and tradeSeq revealed the genes that drive these developmental trajectories. As of 2022, our collaborator is preparing a manuscript based on our analysis. Testing a Reversible Gene Editing Method for Analgesia using iPSC-derived Sensory Neurons Human genetic studies have identified new targets that are important for nociception, with the voltage-gated sodium channel, NaV1.7 (SCN9A), being perhaps the most promising candidate for analgesic drug development. Specifically, a hereditary loss-of-function mutation in NaV1.7 leads to insensitivity to pain without other neurodevelopmental alterations. However, the similarity between various NaV sodium channels presents challenges for developing nociceptor selective inhibitors. Collaborators developed targeted epigenetic repression of NaV1.7 via epigenome engineering approaches as a potential treatment for chronic pain. The current goal is to optimize epigenetic repression reagents targeting the human NaV1.7 gene in a human iPSC-derived nociceptor cell model to enable its translation into the clinic. In the past year, Navega has optimized zing finger protein (ZFP) design and SCTL has assessed the efficiency and specificity of AAV-mediated delivery of ZFPs for NaV1.7 repression in our sensory neurons. New iPSC lines from Phelan-McDermid Syndrome Patients to Identify Novel Pain Mechanisms Patients with Phelan-McDermid syndrome show altered pain perception but little is known about the underlying mechanisms and molecular changes. Disease-in-a-dish models utilizing iPSCs from patients with pain or addictive disorders may advance understanding of different types of pain, and differences in individual pain responses or risk of developing chronic pain or addiction upon opioid exposure. This project is generating new iPSC lines from fibroblast cell lines, which in turn were derived from skin punches obtained from 22 Phelan-McDermid syndrome and 13 controls from family members. All fibroblast cell lines are already part of the NIMH Repository study 115 and managed by Sampled (formerly Rutgers University/RUCDR Infinite Biologics). The goal is to reprogram fibroblasts into iPSC lines and then make them available for distribution, serving as a valuable resource for the scientific community. In 2022, 34 cell lines were successfully reprogrammed and banked. In April 2023, the lines were made publicly available at NIMHs biorepository. Link: https://www.nimhgenetics.org/download-tool/IPSC Manufacturing and Functional Characterization of iPSC-derived Nociceptors and Astrocytes Existing protocols to differentiate human nociceptors from stem cells are inefficient, take a long time, produce limited numbers of neurons which are immature and do not have the full functional repertoire or gene expression profiles of primary nociceptors. NCATS has developed a new protocol for differentiating human nociceptors from iPSCs. The protocol is highly efficient and reproducible and based on the characterization performed to date by NCATS and external collaborators, these iPSC-derived nociceptors resemble primary sensory neurons much closer than neurons generated with previously published protocols. Hence, the advanced human nociceptor platform will be used in several projects for new target identification as well as high-content and high-throughput drug screening. To date, our collaborators have performed phenotypic screening to identify compounds that selectively decrease nociceptor excitability without blocking cortical/motor neuron activity. Our collaborators have also used our iPSC-derived nociceptors to screen for protective compounds using a paclitaxel-induced neuron degeneration model of chemotherapy-induced peripheral neuropathy (CIPN). In the past year, SCTL has published a paper in collaboration with Clifford Wolf and Bruce Bean on the scalable generation of sensory neurons from iPSCs.
开发iPSC衍生的卫星神经胶质细胞用于药物开发 周围神经病变(PN)是神经性疼痛的常见原因,通常需要在一部分患者中使用阿片类药物。虽然PN的原因各不相同,但在某些常见自身免疫性疾病(如干燥综合征(SS)和系统性红斑狼疮(SLE))患者中相对常见。一种新的自身抗体与神经性疼痛和PN在干燥病患者已被确定。值得注意的是,这种自身抗体针对背根神经节(DRG)中卫星神经胶质细胞(SGC)中的蛋白质。该研究项目将从人类iPSCs中开发SGCs,用于机制研究,以及筛选可能在神经性疼痛中发挥作用的新型自身抗原的工具。到目前为止,SCTL已经从啮齿动物DRG中生成了scRNA-Seq数据,以鉴定SGCs的其他发育标志物,这总体上代表了一种研究不足的细胞类型。卫星神经胶质细胞和雪旺细胞簇的亚聚类分析确定了细胞亚型和随时间变化的动态。此外,弹弓分析揭示了一个合理的发展轨迹,而tradeSeq揭示了驱动这些发展轨迹的基因。截至2022年,我们的合作者正在根据我们的分析准备手稿。 使用iPSC衍生的感觉神经元测试用于镇痛的可逆基因编辑方法 人类遗传学研究已经确定了对伤害感受重要的新靶点,电压门控钠通道NaV1.7(SCN 9A)可能是镇痛药物开发最有前途的候选者。具体来说,NaV1.7中的遗传性功能丧失突变导致对疼痛不敏感,而没有其他神经发育改变。然而,各种NaV钠通道之间的相似性为开发伤害感受器选择性抑制剂提出了挑战。合作者通过表观基因组工程方法开发了NaV1.7的靶向表观遗传抑制,作为慢性疼痛的潜在治疗方法。目前的目标是在人iPSC衍生的伤害感受器细胞模型中优化靶向人NaV1.7基因的表观遗传抑制试剂,以使其能够转化为临床。在过去的一年中,Navega优化了Zing finger蛋白(ZFP)的设计,SCTL评估了AAV介导的ZFP递送在我们的感觉神经元中抑制NaV1.7的效率和特异性。 来自McDermid综合征患者的新iPSC系,以确定新的疼痛机制 McDermid综合征患者表现出疼痛感知的改变,但对潜在的机制和分子变化知之甚少。利用来自疼痛或成瘾性疾病患者的iPSCs的Disease-in-a-dish模型可以促进对不同类型疼痛的理解,以及个体疼痛反应的差异或阿片类药物暴露后发展慢性疼痛或成瘾的风险。该项目正在从成纤维细胞系中产生新的iPSC细胞系,这些细胞系又来源于从22名McDermid综合征患者和13名家族成员的对照中获得的皮肤穿孔。所有成纤维细胞系均已成为NIMH Repository研究115的一部分,并由Sampled(前身为Rutgers University/RUCDR Infinite Biologics)管理。我们的目标是将成纤维细胞重新编程为iPSC细胞系,然后使它们可用于分配,作为科学界的宝贵资源。2022年,34个细胞系成功重编程并建库。于二零二三年四月,该等品系于NIMHs生物储存库公开发售。网址:https://www.nimhgenetics.org/download-tool/IPSC iPSC衍生的伤害感受器和星形胶质细胞的制造和功能表征 现有的从干细胞分化人类伤害感受器的方案是低效的,需要很长时间,产生有限数量的神经元,这些神经元是不成熟的,并且不具有初级伤害感受器的完整功能库或基因表达谱。NCATS开发了一种新的方案,用于区分人类伤害感受器和iPSC。该方案是高效和可重复的,并且基于迄今为止由NCATS和外部合作者进行的表征,这些iPSC衍生的伤害感受器与初级感觉神经元的相似性比先前发表的方案产生的神经元更接近。因此,先进的人类伤害感受器平台将用于多个项目中,用于新靶标识别以及高含量和高通量药物筛选。迄今为止,我们的合作者已经进行了表型筛选,以确定选择性降低伤害感受器兴奋性而不阻断皮层/运动神经元活动的化合物。我们的合作者还使用我们的iPSC衍生的伤害感受器,使用化疗诱导的周围神经病变(CIPN)的紫杉醇诱导的神经元变性模型来筛选保护性化合物。在过去的一年里,SCTL与Clifford Wolf和布鲁斯比恩合作发表了一篇关于从iPSC中可扩展地产生感觉神经元的论文。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Simeonov其他文献

Anton Simeonov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Simeonov', 18)}}的其他基金

PRKACA for Fibrolamellar hepatocellular carcinoma
PRKACA 治疗纤维板层肝细胞癌
  • 批准号:
    9554490
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
MST/ITC studies on Vimentin DHA interaction
MST/ITC 关于 Vimentin DHA 相互作用的研究
  • 批准号:
    9554499
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
Disrupting Type IV secretion function to prevent virulence in the pathogenic bacterium Legionella pneumophila
破坏 IV 型分泌功能以防止致病菌嗜肺军团菌的毒力
  • 批准号:
    9554502
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
High-throughput multiparametric drug screening method for 3D spheroids
3D球体高通量多参数药物筛选方法
  • 批准号:
    9554522
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
Identification of Grb10:Insulin Receptor Disruptors
Grb10:胰岛素受体干扰物的鉴定
  • 批准号:
    9554524
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
A Novel Compound for Targeted Treatment of CBF Leukemia
一种靶向治疗 CBF 白血病的新型化合物
  • 批准号:
    9354952
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
Trans-NIH RNAi Facility (TNRF)
跨 NIH RNAi 设施 (TNRF)
  • 批准号:
    9205806
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
A Novel Compound for Targeted Treatment of CBF Leukemia
一种靶向治疗 CBF 白血病的新型化合物
  • 批准号:
    9205569
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
A Novel Compound for Targeted Treatment of CBF Leukemia
一种靶向治疗 CBF 白血病的新型化合物
  • 批准号:
    9550575
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
Profliing Assay for Redox Potential
氧化还原电位分析测定
  • 批准号:
    9772066
  • 财政年份:
  • 资助金额:
    $ 92.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了