Oxygen sensing mechanism(s) in fetal programming of salt-sensitive hypertension
盐敏感性高血压胎儿编程中的氧传感机制
基本信息
- 批准号:10923557
- 负责人:
- 金额:$ 2.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAdult ChildrenAnimal ModelAnimalsAntihypertensive AgentsAreaBlood PressureBlood VesselsDataDependenceDiseaseEnvironmentEventExposure toFetusFunctional disorderGene ActivationGenesGenetic TranscriptionHIF1A geneHemeHeritabilityHomeostasisHumanHypertensionHypoxiaImpairmentIndividualInjury to KidneyKidneyLaboratoriesLifeMaternal ExposureMentorsMethodsMolecularNitric Oxide SynthaseOutcome StudyOxidative StressOxygenOxygenasesPathway interactionsPerinatalPerinatal ExposurePeripheral ResistancePlayPopulationPredispositionPregnancyPreventionProcollagen-Proline DioxygenaseProductionProteinsRattusRegulationResearchResistanceRoleSeriesSodium ChlorideSodium-Restricted DietSourceStressTestingTestosteroneTissuesWeaningWestern BlottingbHLH-PAS factor HLFblood pressure elevationdietary salteffective therapyexperimental studyfetal programminggenetic regulatory proteinhigh salt diethuman modelhypoxia inducible factor 1improvedin uteroinhibitorinterestnormotensiveoffspringpreventprogramsresponsesalt sensitive hypertensionsensorstemtherapeutic targetvascular bed
项目摘要
Abstract
Heritability of saltsensitive hypertension and high susceptibility of offspring to maternal perinatal high salt diet
(HSD) suggests that saltsensitive hypertension has its origin early in life. However, the mechanism(s) underlying
the early origin of saltsensitive hypertension is not clear.
Salt stress increases tissue demand for oxygen. In response, the tissue produces hypoxia inducible factor 1
alpha (HIF1α) which in turn activates its target antihypertensive genes (NOS2 and HO1) which consequently
prevent blood pressure (BP) elevation in response to the salt stress. However, the activity of HIF1α is closely
regulated by prolyl hydroxylase domaincontaining proteins 2 (PHD2). In saltsensitive hypertension, the
regulatory function of PHD2 on HIF1α is impaired by HSD, consequently the ability of HIF1α to activate its
target genes and prevent BP elevation in response to HSD is reduced. Likewise, impairment of the normal
vasodilatory response to HSD is considered the initiator of the pressor response in saltsensitive hypertension.
Considering the effect of HSD on tissue oxygen demand and the additive effect of the low oxygen tension
environment of the in-utero life, we seek to investigate whether maternal exposure to perinatal HSD primes the
fetus’ vascular oxygen sensors thereby, programming the offspring vascular beds to poorly respond to salt stress
and develop saltsensitive hypertension in adult life.
In our laboratory, we have used animal models to study the mechanisms that underlie the pathophysiology of
saltsensitive hypertension – an interest that stemmed out of high percentage of saltsensitive hypertension in
our population. In my US mentor’s laboratory, several cellular and molecular methods are used to investigate
the mechanisms underlying saltsensitive hypertension and renal injury. Specifically, his research group has
demonstrated the NOdependent regulation of HIF1α by PHD2 in salt induced hypertension and renal injury.
However, it is unknown if PHD2, HIF1α, and its target antihypertensive genes are involved in the fetal
programming of saltsensitive hypertension. Therefore, we hypothesized that exposure of dams to perinatal HSD
dysregulates the vascular oxygen sensing mechanism(s) of the fetus, impairs vascular functions and causes
hypertension in the offspring in adult life. We seek to demonstrate in the offspring: 1) that maternal exposure to
perinatal HSD dysregulates the vascular oxygen sensing mechanism(s); 2) that dysregulation of the vascular
oxygen sensing mechanism(s) impairs vascular function and causes hypertension; 3) that exposure of offspring
to postweaning low salt diet reverses the effect of perinatal HSD on vascular oxygen sensing mechanism(s),
vascular function and BP.
The outcome of this study may open new areas for further experimentation and possible therapeutic targets for
effective ways of preventing / controlling arterial BP and saltsensitive hypertension.
抽象的
盐敏感高血压的遗传力和后代对母亲围产期高盐饮食的高敏感性
(HSD)表明,盐敏的高血压起源于生命的早期。但是,基础机制
盐敏感高血压的早期起源尚不清楚。
盐胁迫增加了对氧的组织需求。作为响应,组织产生缺氧诱导因子1
α(HIF1α)又激活其靶标降压基因(NOS2和HO1)
防止血压(BP)响应盐胁迫。但是,HIF1α的活性紧密
由丙酰羟化酶结构域2(PHD2)调节。在盐敏感的高血压中
HSD损害了PHD2对HIF1α的调节功能,因此HIF1α激活其激活的能力
靶基因并防止响应HSD的BP升高。同样,正常的损害
对HSD的血管舒张反应被认为是盐敏Hypermension中压压反应的引发者。
考虑HSD对组织氧需求的影响以及低氧张力的附加效果
Utero生活的环境,我们试图调查产妇接触围产期HSD Primes是否暴露
因此,胎儿的血管氧气传感器,对后代血管床编程,以应对盐胁迫
并在成人生活中发展出盐敏感的高血压。
在我们的实验室中,我们使用动物模型研究了基于病理生理的机制
盐敏感高血压 - 这种兴趣是从高百分比的盐敏高血压中引起的
我们的人口。在我的美国心态中,使用了几种细胞和分子方法来研究
盐敏的高血压和肾脏损伤的基础机制。具体来说,他的研究小组有
在盐诱导的高血压和肾脏损伤中,通过PHD2对HIF1α的结节调节。
但是,尚不清楚PHD2,HIF1α及其靶标降压基因参与胎儿
盐敏高血压的编程。因此,我们假设大坝暴露于围产期HSD
胎儿的血管氧气传感机制失调,会损害血管功能和原因
成人后代的高血压。我们试图在后代中证明:1)
围产期HSD失调的血管氧感应机理(S); 2)血管的失调
氧气感应机制会损害血管功能并引起高血压; 3)后代的暴露
在断奶后低盐饮食会逆转围产期HSD对血管氧气感应机制的影响,
血管功能和BP。
这项研究的结果可能会为进一步的实验和可能的治疗靶标开放新领域
预防 /控制动脉BP和盐敏感高血压的有效方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Kolade OLOYO其他文献
Ahmed Kolade OLOYO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Kolade OLOYO', 18)}}的其他基金
Oxygen sensing mechanism(s) in fetal programming of salt-sensitive hypertension
盐敏感性高血压胎儿编程中的氧传感机制
- 批准号:
10616520 - 财政年份:2019
- 资助金额:
$ 2.59万 - 项目类别:
Oxygen sensing mechanism(s) in fetal programming of salt-sensitive hypertension
盐敏感性高血压胎儿编程中的氧传感机制
- 批准号:
10425252 - 财政年份:2019
- 资助金额:
$ 2.59万 - 项目类别:
Oxygen sensing mechanism(s) in fetal programming of salt-sensitive hypertension
盐敏感性高血压胎儿编程中的氧传感机制
- 批准号:
10153911 - 财政年份:2019
- 资助金额:
$ 2.59万 - 项目类别:
Oxygen sensing mechanism(s) in fetal programming of salt-sensitive hypertension
盐敏感性高血压胎儿编程中的氧传感机制
- 批准号:
10018128 - 财政年份:2019
- 资助金额:
$ 2.59万 - 项目类别:
相似国自然基金
基于符号互动论的抚养未成年子女的乳腺癌患者亲子有效沟通机制及干预模式的研究
- 批准号:81903179
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
严重精神障碍患者家庭角色缺失对其未成年子女健康的影响路径研究
- 批准号:71603006
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Is gestational sleep apnea a previously unrecognized cause of maternal immune activation that predisposes male offspring to disease-relevant neural dysfunction?
妊娠期睡眠呼吸暂停是否是一种以前未被认识到的母体免疫激活的原因,导致男性后代容易出现与疾病相关的神经功能障碍?
- 批准号:
10680972 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Effects of early life sleep disruption on prefrontal cortex electrophysiological state and affiliation/attachment
生命早期睡眠中断对前额皮质电生理状态和归属/依恋的影响
- 批准号:
10734842 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Longitudinal integration of environmental exposures, omics, and childhood NAFLD (LEON) Study
环境暴露、组学和儿童 NAFLD (LEON) 研究的纵向整合
- 批准号:
10744546 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
The interaction of perinatal organophosphate flame retardant exposure and adult chronic stress on cognitive processing
围产期有机磷阻燃剂暴露与成人慢性应激对认知加工的相互作用
- 批准号:
10449738 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Developmental Origins of Cardiovascular Disease in Offspring from Non-Human Primate Pregnancies at Advanced Maternal Age
高龄非人类灵长类动物妊娠后代心血管疾病的发育起源
- 批准号:
10629732 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别: