Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
基本信息
- 批准号:10618131
- 负责人:
- 金额:$ 45.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-05 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAllelesAmino Acid SequenceAnimal ModelAntibiotic ResistanceAntibioticsAutolysinAutolysisBacteriaBacterial PhysiologyBacterial ProteinsBindingBiochemicalBiologicalBiological AssayBrainCell NucleolusCell WallCessation of lifeCleaved cellClinicalCommunicable DiseasesCompensationComplexCytolysisDataDissectionDoctor of PhilosophyDown-RegulationEngineeringEnzymesEukaryotaExcisionFailureFamilyGeneticGenomeGoalsGrantGrowthHost DefenseImmuneImmunocompromised HostIndividualInfectionLaboratoriesLyticMembraneMeningitisMethodsMicroscopicModelingMolecularMultiprotein ComplexesMusMutationNyssaOrganellesPathway interactionsPatientsPenicillinsPhasePhenotypePhysical condensationPhysiologicalPneumoniaProcessProductionPropertyProteinsRegulationRelapseRoleSepsisSouth AfricaStreptococcusStreptococcus pneumoniaeStudy modelsSumSurfaceSystemTestingTimeTissuesTreatment FailureVariantantibiotic toleranceantimicrobial peptidebactericidebiological adaptation to stresscapsulecathelicidin antimicrobial peptideclinical phenotypecombatgenome analysisin vivoinsightmodel organismmultidrug tolerancemutantnovelpathogenpressureresponseskillsspatiotemporalsuicidaltool
项目摘要
Antibiotic resistance and tolerance are a major increasing threat to treating infectious
diseases. Streptococcus pneumoniae, the leading cause of pneumonia, sepsis, and meningitis
worldwide, is a model organism for understanding antibiotic-induced autolysis and failure of
therapy due to antibiotic tolerance: a phenotype when bacteria stop growing but are not killed.
The main pneumococcal autolysin, LytA, drives autolysis but its mode of downregulation during
tolerance is unknown. We have discovered a new LytA activity: capsule shedding and through its
analysis have, for the first time, discovered candidates for regulators of LytA that also could
explain the modulation of penicillin responses that lead to tolerance and treatment failure. Using
the pneumococcus as a model, our lab has revealed that, for capsule shedding, LytA is activated
to cleave cell wall without lysis in response to antimicrobial peptides, typified but not limited to LL-
37. Rather, LytA removes surface attached capsule in a protective response to avoid LL-37. We
have identified 3 loci that regulate these activities of LytA. Mutation of these LytA modulating
(Lym) loci recapitulates the penicillin tolerance phenotype of clinical isolates: production of
bioactive LytA, but a failure to trigger autolysis after penicillin treatment.
Our discovery provides tools to make important inroads into defining the mechanisms
governing antibiotic lytic responses (the first mechanistic discovery of how LytA is controlled).
From analysis of genomes of streptococcal pathogens in general, it is apparent that lym loci are
widespread and have alleles that cluster with distinct penicillin tolerant phenotypes. New insights
into autolysin and penicillin responses are needed to advance both the fields of bacterial
physiology and infectious diseases.
We propose in Aim 1 to take a combined biochemical, genetic, and microscopic approach
to analyze the roles of the Lym proteins and lym loci on LytA regulation. In aim 2, we will exploit
our new discovery that 3 Lym proteins are the first bacterial proteins shown to form biomolecular
condensates and initiate phase separation. This property is widely used in eukaryotes to regulate
complex spatiotemporal multi-protein processes and is thus especially well-suited as a highly
novel mechanism to underpin LytA regulation by 3 Lyms. In Aim 3, we will examine lym alleles
in tolerant clinical isolates of pneumococcus. These isolates are derived from patients dying of
meningitis due to treatment failure that is recapitulated in the animal model of meningitis. We will
define Lyms as a cause of failure of potent bactericidal action of antibiotics due to tolerance.
抗生素耐药性和耐受性是治疗感染性疾病的主要威胁
疾病。肺炎链球菌,肺炎、败血症和脑膜炎的主要原因
是了解抗生素诱导的自溶和失败的模式生物
抗生素耐药引起的治疗:细菌停止生长但没有被杀死的一种表型。
主要的肺炎球菌自溶素LytA驱动自溶,但其下调模式在
耐受性是未知的。我们发现了一种新的LytA活动:胶囊脱落并通过其
分析首次发现LytA监管机构的候选人也可能
解释导致耐受和治疗失败的青霉素反应的调节。vbl.使用
以肺炎球菌为模型,我们实验室已经揭示,对于包膜脱落,LytA是被激活的
不裂解细胞壁对抗菌肽的反应,典型但不限于LL-
37.相反,LytA在保护性反应中移除了表面附着的胶囊,以避免LL-37。我们
已经确定了3个调节LytA这些活性的基因座。这些LytA调节因子的突变
(Lym)基因座概括了临床分离株的青霉素耐药表型:产生
生物活性LytA,但青霉素治疗后未能触发自溶。
我们的发现提供了在定义机制方面取得重要进展的工具
管理抗生素裂解反应(LytA是如何被控制的第一个机械发现)。
从对链球菌病原体基因组的总体分析来看,很明显,Lym基因座是
分布广泛,并具有与青霉素耐药表型不同的等位基因。新见解
转化为自溶素和青霉素的反应需要促进细菌的这两个领域
生理学和传染病。
我们在目标1中建议采取生化、遗传和微观相结合的方法。
分析LYM蛋白和LYM基因座在LytA调控中的作用。在目标2中,我们将利用
我们的新发现:3个Lym蛋白是第一个形成生物分子的细菌蛋白
冷凝物和启动相分离。这一特性在真核生物中被广泛用于调节
复杂的时空多蛋白质过程,因此特别适合作为高度
3个LYM支持LytA调控的新机制。在目标3中,我们将检查LYM等位基因
耐药肺炎球菌临床分离株。这些分离株来自于死于
由于治疗失败而导致的脑膜炎,在脑膜炎的动物模型中反复出现。我们会
将LYMS定义为由于耐受性而导致抗生素有效杀菌作用失败的原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elaine I Tuomanen其他文献
Elaine I Tuomanen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elaine I Tuomanen', 18)}}的其他基金
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Bioactivities of pneumococcal cell wall in neuropathogenesis
肺炎球菌细胞壁在神经发病机制中的生物活性
- 批准号:
10569107 - 财政年份:2016
- 资助金额:
$ 45.5万 - 项目类别:
Bioactivities of pneumococcal cell wall in neuropathogenesis
肺炎球菌细胞壁在神经发病机制中的生物活性
- 批准号:
10436661 - 财政年份:2016
- 资助金额:
$ 45.5万 - 项目类别:
Bioactivities of pneumococcal cell wall in neuropathogenesis
肺炎球菌细胞壁在神经发病机制中的生物活性
- 批准号:
10053312 - 财政年份:2016
- 资助金额:
$ 45.5万 - 项目类别:
Bioactivities of pneumococcal cell wall in neuropathogenesis
肺炎球菌细胞壁在神经发病机制中的生物活性
- 批准号:
9237777 - 财政年份:2016
- 资助金额:
$ 45.5万 - 项目类别:
Pathogenesis & molecular epidemiology of Pneumococcal infection in Sickle Cell
发病
- 批准号:
7821228 - 财政年份:2009
- 资助金额:
$ 45.5万 - 项目类别:
Pathogenesis and Molecular Epidemiology of Pneumococcal Infection in Sickle Cell
镰状细胞性肺炎球菌感染的发病机制和分子流行病学
- 批准号:
7538838 - 财政年份:2007
- 资助金额:
$ 45.5万 - 项目类别:
Epidemiology & Genetic Markers for Pneumococcal Tolerance
流行病学
- 批准号:
7041738 - 财政年份:2003
- 资助金额:
$ 45.5万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Research Grant