Data Science Facility Core
数据科学设施核心
基本信息
- 批准号:10617826
- 负责人:
- 金额:$ 31.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsApplications GrantsAreaBioinformaticsBiologicalBiological SciencesBiometryChemicalsCollaborationsCommunitiesComplexComputational BiologyComputer AnalysisComputer ModelsComputer softwareCore FacilityCustomDataData AnalysesData CollectionData ScienceData SecurityData SetData SourcesData Storage and RetrievalDecision MakingDevelopmentEnvironmentEnvironmental ExposureEnvironmental HazardsEnvironmental HealthEnvironmental Risk FactorEvaluationFundingGenomicsGoalsHealth SciencesHuman ResourcesIn VitroIndividualIntegrative MedicineInterdisciplinary StudyKnowledgeMathematicsMetabolismMethodsMissionModelingNational Institute of Environmental Health SciencesPilot ProjectsPoliciesPolicy MakerPopulationPositioning AttributePredispositionProcessPublic HealthPublicationsRegulationResearchResearch DesignResearch PersonnelResourcesRestRiskScienceSecurityService delivery modelServicesStatistical ModelsStudentsTexasToxic effectToxicokineticsTranslatingTranslational ResearchUncertaintyVisionWorkbasecommunity engagementcomputational toxicologydata cleaningdata exchangedata integrationdata integritydata managementdata miningdata repositorydata reusedata streamsdesigndiverse dataexperienceflexibilityhigh dimensionalityin vitro Assayin vivoindexinglarge datasetsmembermethod developmentnovelopen dataopen sourceoperationoutreachpharmacokinetic modelpopulation basedpredictive modelingrepositoryresearch facultyresponserisk prediction modelstatisticsstressorstructured dataunstructured datausabilityvoucherweb portal
项目摘要
DATA SCIENCE FACILITY CORE (DSFC) ABSTRACT
The proposed Texas A&M Center for Environmental Health Research (TiCER) is focused on “Enhancing
Public Health by Identifying, Understanding and Reducing Adverse Environmental Health Risks.” The Data
Science Facility Core (DSFC) will provide key enabling services in data collection, storage, analysis, and
integration to assist members of the Center to fulfill this mission. Key data science challenges that the DSFC
will address include the high dimensionality of novel biological and chemical data streams, the mixture of
structured and unstructured data at the level of local communities, and the need to translate data into
actionable knowledge for environmental health decision-making. The DSFC will support these needs by
leveraging data science expertise and resources across Texas A&M. There is a nearly ubiquitous need for
such services across the Center’s four research themes: Stressors to Responses; Environment and
Metabolism; Individuals to Populations; and Community, Regulation, and Policy. Thus, the DSFC will serve as
a key facilitator of interactions across the entire Center. The DSFC’s overarching goals are to provide novel
and state-of-the-art data science services to support and integrate the Center’s scientific and outreach
activities. This goal will be accomplished by providing services in several specialized and complex areas of
data science—computational toxicology, bioinformatics, and statistics/biostatistics—as well as providing a
central data repository for Center investigators. In the computational toxicology area, the focus will be on
characterizing and predicting chemical toxicity through both mechanistic and data-driven
mathematical/statistical models that integrate multiple diverse data sets. In the bioinformatics area, emphasis
will be placed on guiding investigators in navigating the many available commercial and open-source analysis
options, developing customized analytical workflows, and addressing any needs for new methods
development. Statistics and biostatistics support will be provided both for basic services such as study design
and routine analysis, as well as for custom needs for collecting, processing, integrating, and drawing
conclusions from diverse data sets. Integration of data will be facilitated through a common data repository,
the design and development of which will be closely coordinated with the rest of the Center, and which be
indexed for searching and data mining. The DSFC will provide these services through a flexible combination of
direct support from Core personnel and vouchers to allocate as needed ($138,000/year from NIEHS and
$20,000/year from Texas A&M commitment). The DSFC will work closely with the Administrative Core to
encourage investigators’ use of the DSFC and access and track the Core’s operation and funding allocations.
The leaders of the DSFC have an established track record of collaborative, interdisciplinary, and translational
research, and are well positioned to support the data science needs across the Center to address public health
risks from environmental exposures in Texas and beyond.
数据科学设施核心(dsfc)摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weihsueh A Chiu其他文献
Weihsueh A Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weihsueh A Chiu', 18)}}的其他基金
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.98万 - 项目类别:
Research Grant