Vascular networks genetically engineered for protein drug delivery

用于蛋白质药物输送的基因工程血管网络

基本信息

  • 批准号:
    10617773
  • 负责人:
  • 金额:
    $ 66.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Hemophilia A is an inherited bleeding disorder caused by mutations in the F8 gene encoding coagulation factor VIII (FVIII). Current treatment involves repeated i.v. infusions of FVIII concentrates throughout the life of the patient, which creates tremendous discomfort and morbidity. Alternatively, we seek to develop a novel technology for sustained FVIII delivery. Recently, we developed a non-viral ex vivo gene therapy approach for hemophilia A. We used a piggyBac DNA transposon system to insert 70 copies of the F8 gene into human pluripotent stem cells (PSCs). We differentiated these modified F8-PSCs into endothelial cells (iECs; natural producers of FVIII) and demonstrated the production of exceedingly high levels of FVIII. After subcutaneous engraftment of our human F8-iECs into immunodeficient hemophilic (SCID-f8ko) mice, we achieved up to 600% circulating levels of FVIII, effectively correcting the clotting deficiency. Notwithstanding this progress, our open- graft approach has some inherent limitations for translation: 1) immune rejection of non-autologous cells, and 2) concerns over cell dissemination and safety. To address these limitations, we have teamed up with Dr. Minglin Ma (Cornell), who has extensive experience with devices for encapsulation and transplantation of cells in mice and dogs. We propose a technology entailing a novel retrievable encapsulation device. We will assemble our F8-iECs into stable 3D vascular organoids and will then embed multiple organoids into an alginate hydrogel inside a tubular encapsulation device (1-mm diameter; variable length). Based on our preliminary data, we hypothesize that our device will protect the cells from immune rejection and produce FVIII that will reach the bloodstream at therapeutic levels upon implantation into the peritoneal cavity. To test these hypotheses, we propose three Specific Aims. In Aim-1, we will genetically engineer vascular organoids for the production of clinically relevant levels of FVIII. We will develop a new promoterless exon-trap sensor cassette to avoid intra- exon integration of our piggyBac transposon. We will then insert multiple F8 copies into NIH-eligible PSC lines to generate universal clones for high FVIII production. In Aim-2, we will establish an encapsulation device configuration for optimal FVIII production and determine the safety and long-term efficacy in immunocompetent hemophilic mice. We will evaluate cell survival, BDD-FVIII activity in plasma, correction of coagulation deficiency, risk of teratoma formation, and reversibility of the treatment. In Aim-3, we will evaluate the safety and long-term efficacy of our devices in dogs. We will first generate canine-specific FVIII-secreting vascular organoids. We will then transplant our devices (I.P.) in healthy dogs for up to 6 months and evaluate scalability, safety, retrievability, and FVIII production. Lastly, we will test our allogeneic devices in hemophilia A dogs and establish safety and efficacy for up to 1 year. In summary, we propose studies to develop a novel technology to deliver FVIII in hemophilia A. We envision this research could pave the way for future studies in humans.
项目总结/文摘

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enzymatic regulation of functional vascular networks using gelatin hydrogels.
  • DOI:
    10.1016/j.actbio.2015.02.024
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Chuang CH;Lin RZ;Tien HW;Chu YC;Li YC;Melero-Martin JM;Chen YC
  • 通讯作者:
    Chen YC
Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue.
在介导脂肪组织中介导的血管网络形成上的共价和物理交联的胶原凝胶的比较。
In Vivo Vascular Network Forming Assay.
Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.
  • DOI:
    10.1016/j.actbio.2015.09.002
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Kuo KC;Lin RZ;Tien HW;Wu PY;Li YC;Melero-Martin JM;Chen YC
  • 通讯作者:
    Chen YC
Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minglin Ma其他文献

Minglin Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minglin Ma', 18)}}的其他基金

Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
  • 批准号:
    9910390
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
  • 批准号:
    10402773
  • 财政年份:
    2018
  • 资助金额:
    $ 66.71万
  • 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
  • 批准号:
    10457445
  • 财政年份:
    2015
  • 资助金额:
    $ 66.71万
  • 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
  • 批准号:
    10297294
  • 财政年份:
    2015
  • 资助金额:
    $ 66.71万
  • 项目类别:
Organogenesis in microcapsules: developing an efficient and scalable organoid culture platform
微胶囊中的器官发生:开发高效且可扩展的类器官培养平台
  • 批准号:
    8952452
  • 财政年份:
    2015
  • 资助金额:
    $ 66.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了