Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
基本信息
- 批准号:10877549
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyAreaAtlasesAuditory areaAxonBiological ModelsBrainBrain MappingBrain imagingCalciumCellsCognitionComplexDataData SetDecision MakingDetectionDevelopmentElectron MicroscopyEuropeanFunctional ImagingGenerationsGeometryGoalsHolographyHumanImageImaging TechniquesImaging technologyIndividualLabelLengthMachine LearningMapsMediatingMental disordersMorphologyMusNeocortexNeuronsNeurosciencesOutcomeParietal LobePerformanceProtocols documentationReporterResolutionRoentgen RaysSamplingSensorySoftware ToolsSourceSpeedStainsSynapsesSynchrotronsTechniquesTissue SampleTissuesTrainingVisual CortexVisualizationWorkX-Ray Medical Imaginganatomic imagingbeamlinecognitive functionconvolutional neural networkdeep learningdetectorexperimental studyhigh resolution imagingimage reconstructionimaging approachimaging capabilitiesimaging modalityimprovedin vivoinsightlight microscopymachine visionmicroscopic imagingmillimetermultimodal datamultisensorynanonanoimagingnanoscaleneocorticalneural circuitneuronal circuitryreconstructionsample fixationsegmentation algorithmsensorsensory inputsoftware developmentsupport networktooltwo-photonwhite matter
项目摘要
Project Summary
This proposal's objective is to develop synchrotron-based X-ray imaging technologies to enable high-resolution imaging
of brain-wide neuronal circuits. Comprehensively mapping brain-wide circuits is not currently feasible, even in small
mammalian model systems, because light microscopy (LM) lacks sufficient resolution and electron microscopy (EM)
cannot be applied over large volumes. Leveraging the unprecedented qualities of the new 4th generation synchrotron
source at the European Synchrotron, we will develop X-ray nano-holography (XNH) imaging techniques for large-scale
imaging of brain circuits. Taking advantage of improvements in source coherence and brightness, we will improve
imaging resolution to allow direct visualization of synaptic connections between neurons, and develop imaging protocols
that allow imaging of centimeter-scale circuit volumes within a typical beamline experiment. We will combine non-
destructive XNH with EM and LM imaging techniques to rigorously and quantitatively validate the accuracy of XNH-
based circuit reconstruction. We will then use this correlative workflow to study the relationships between long-range
sensory inputs, local synaptic micro-circuitry, and single-neuron activity, investigating how circuits in the posterior
parietal cortex (PPC) support perceptual decision-making. Lastly, we will apply XNH circuit-mapping over an entire
cortical hemisphere, and utilize deep-learning based machine vision algorithms to obtain a comprehensive atlas of cortical
connectivity. This atlas will in principle resolve all long-range connections between cortical areas at single-axon
resolution, lending insight into how distinct cortical areas achieve specialized function, and how distributed cortical
networks support cognition and are affected by psychiatric disorders.
项目摘要
该提案的目标是开发基于同步加速器的X射线成像技术,以实现高分辨率成像
整个大脑的神经元回路。目前,即使是在很小的范围内,全面绘制全脑回路图也是不可行的
哺乳动物模型系统,因为光学显微镜(LM)缺乏足够的分辨率和电子显微镜(EM)
不能应用于大容量。利用新的第四代同步加速器前所未有的性能
来源:欧洲同步加速器,我们将开发用于大规模X射线纳米全息(XNH)成像的技术
大脑回路的成像。利用信号源相干性和亮度的改进,我们将改进
成像分辨率允许直接可视化神经元之间的突触连接,并开发成像方案
这使得在典型的光束线实验中可以成像厘米级的电路体积。我们将结合非
用EM和LM成像技术严格和定量地验证XNH的准确性
基于电路重构。然后我们将使用这个相关的工作流来研究远程
感觉输入、局部突触微电路和单个神经元活动,研究后部电路如何
顶叶皮质(PPC)支持知觉决策。最后,我们将把XNH电路映射应用于整个
大脑皮层,并利用基于深度学习的机器视觉算法获得大脑皮层的全面图谱
连通性。这一图谱原则上将解决单一轴突皮质区域之间的所有远程连接
分辨率,有助于洞察不同的皮质区域如何实现特定的功能,以及皮质如何分布
网络支持认知,并受到精神障碍的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Kuan其他文献
Aaron Kuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Kuan', 18)}}的其他基金
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10282498 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10454403 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant