Empirical Power Analysis Tool for fMRI
fMRI 经验功率分析工具
基本信息
- 批准号:10868802
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsBRAIN initiativeBenchmarkingBrainCharacteristicsComplexComputer softwareDataData SetDatabasesDedicationsDevelopmentDimensionsDiseaseDocumentationFunctional Magnetic Resonance ImagingFundingHumanIndividualInternationalInternetLiteratureMapsMemoryMethodologyMethodsModelingModernizationOnline SystemsParticipantPatientsPilot ProjectsProceduresProductionProfessional CompetenceRecommendationReproducibility of ResultsResearchResearch DesignResearch PersonnelSample SizeSamplingSampling StudiesScanningSpecific qualifier valueTestingTrainingWorkbasecareerdesigninteractive toolinterestpower analysissimulationstudy characteristicssymposiumtoolweb appweb-based tool
项目摘要
PROJECT SUMMARY
Functional magnetic resonance imaging (fMRI) research has transformed our understanding of human brain
function and disease and is flourishing under unprecedented international funding, including dedicated support
from the BRAIN Initiative. However, recent work has exposed an endemic lack of statistical power (i.e., ability to
detect effects of interest) in typical fMRI studies, leading to findings that do not replicate or uncover only a small
tip of the iceberg of true effects. This arises in large part because performing proper power analyses to guide
fMRI study design is not straightforward. First, it is difficult to estimate expected effects based on the literature,
and study sample sizes are already so small that even smaller pilot data may not yield helpful estimates.
Furthermore, fMRI data and inferential algorithms are complex, yet existing fMRI power analysis tools rely on
relatively limited simulations, parametric estimates, and omit the most popular inferential procedures. As a result,
fMRI researchers often perform misleading power analyses or avoid power analyses altogether, missing a critical
opportunity to optimally design studies to detect desired effects. To address this gap, we will create a power
analysis algorithm and tool tailored for standard fMRI studies that leverages: 1) large existing datasets to define
typical study effects, and 2) recently developed methods for benchmarking power of complex inferential
procedures. Finally, it will be designed to provide tailored recommendations and be easy to use, thus promoting
its utility to everyday researchers. In Aim 1 (K99), we will create database of effect size maps for typical study
designs using large, publicly available datasets and build a web app for exploring these maps. We will use this
database in Aim 2 (R00) to design a post hoc power calculator algorithm to estimate power for typical study
designs. Aim 3 (R00) will refine this algorithm by creating a meta-regression model that incorporates additional
study and participant factors to provide a more tailored estimate of power for an individual researcher. Finally, in
Aim 4 (R00) we will create and disseminate an easy-to use web-based tool for performing the “tailored” power
analysis, notably only requiring the user to specify information readily available to them. This proposal will result
in the first algorithm and tool to perform an empirical power analysis for fMRI study planning, with a potential
user base that includes all researchers planning an fMRI study using typical designs. This will enable researchers
to more easily and accurately plan well-powered studies, thus promoting more robust and reproducible findings
in the field. Furthermore, this proposal will provide training in production-ready web development, study
aggregation methods, and independence-oriented professional competencies, which will facilitate my transition
to an independent research career leading statistical methodology development in fMRI.
项目概要
功能磁共振成像(fMRI)研究改变了我们对人类大脑的理解
功能和疾病,并在前所未有的国际资助下蓬勃发展,包括专门的支持
来自大脑倡议。然而,最近的工作暴露了统计能力的普遍缺乏(即统计能力的能力)
在典型的功能磁共振成像研究中检测感兴趣的效应),导致结果不能复制或仅揭示一小部分
真实效果的冰山一角。这在很大程度上是因为执行适当的功率分析来指导
功能磁共振成像研究设计并不简单。首先,很难根据文献来估计预期效果,
而且研究样本量已经很小,即使较小的试点数据也可能无法产生有用的估计。
此外,fMRI 数据和推理算法很复杂,而现有的 fMRI 功率分析工具依赖于
相对有限的模拟、参数估计,并省略了最流行的推理程序。因此,
fMRI 研究人员经常进行误导性的功效分析或完全避免功效分析,从而错过了关键的
优化设计研究以检测预期效果的机会。为了解决这一差距,我们将创建一个权力
专为标准功能磁共振成像研究量身定制的分析算法和工具,利用:1)现有的大型数据集来定义
典型的研究效果,以及 2) 最近开发的复杂推理能力基准测试方法
程序。最后,它将被设计为提供量身定制的建议并且易于使用,从而促进
它对日常研究人员的实用性。在目标 1 (K99) 中,我们将为典型研究创建效应大小图数据库
使用大型、公开可用的数据集进行设计,并构建一个网络应用程序来探索这些地图。我们将使用这个
目标 2 (R00) 中的数据库设计事后功效计算器算法来估计典型研究的功效
设计。目标 3 (R00) 将通过创建一个元回归模型来完善该算法,该模型包含额外的
研究和参与者因素,为个别研究人员提供更量身定制的能力估计。最后,在
目标 4 (R00) 我们将创建并传播一个易于使用的基于网络的工具,用于执行“定制”功能
分析,特别是只需要用户指定他们容易获得的信息。该提案将产生
第一个对功能磁共振成像研究计划进行实证功效分析的算法和工具,具有潜在的潜力
用户群,包括所有计划使用典型设计进行功能磁共振成像研究的研究人员。这将使研究人员
更轻松、更准确地规划有力的研究,从而促进更稳健和可重复的研究结果
在外地。此外,该提案还将提供生产就绪型网络开发、研究方面的培训
聚合方法和独立导向的专业能力,这将有助于我的过渡
领导功能磁共振成像统计方法开发的独立研究生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Noble其他文献
Stephanie Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Noble', 18)}}的其他基金
Constrained Network-Based Multiple Comparison Correction
基于约束网络的多重比较校正
- 批准号:
10212948 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant














{{item.name}}会员




