Empirical Power Analysis Tool for fMRI
fMRI 经验功率分析工具
基本信息
- 批准号:10868802
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsBRAIN initiativeBenchmarkingBrainCharacteristicsComplexComputer softwareDataData SetDatabasesDedicationsDevelopmentDimensionsDiseaseDocumentationFunctional Magnetic Resonance ImagingFundingHumanIndividualInternationalInternetLiteratureMapsMemoryMethodologyMethodsModelingModernizationOnline SystemsParticipantPatientsPilot ProjectsProceduresProductionProfessional CompetenceRecommendationReproducibility of ResultsResearchResearch DesignResearch PersonnelSample SizeSamplingSampling StudiesScanningSpecific qualifier valueTestingTrainingWorkbasecareerdesigninteractive toolinterestpower analysissimulationstudy characteristicssymposiumtoolweb appweb-based tool
项目摘要
PROJECT SUMMARY
Functional magnetic resonance imaging (fMRI) research has transformed our understanding of human brain
function and disease and is flourishing under unprecedented international funding, including dedicated support
from the BRAIN Initiative. However, recent work has exposed an endemic lack of statistical power (i.e., ability to
detect effects of interest) in typical fMRI studies, leading to findings that do not replicate or uncover only a small
tip of the iceberg of true effects. This arises in large part because performing proper power analyses to guide
fMRI study design is not straightforward. First, it is difficult to estimate expected effects based on the literature,
and study sample sizes are already so small that even smaller pilot data may not yield helpful estimates.
Furthermore, fMRI data and inferential algorithms are complex, yet existing fMRI power analysis tools rely on
relatively limited simulations, parametric estimates, and omit the most popular inferential procedures. As a result,
fMRI researchers often perform misleading power analyses or avoid power analyses altogether, missing a critical
opportunity to optimally design studies to detect desired effects. To address this gap, we will create a power
analysis algorithm and tool tailored for standard fMRI studies that leverages: 1) large existing datasets to define
typical study effects, and 2) recently developed methods for benchmarking power of complex inferential
procedures. Finally, it will be designed to provide tailored recommendations and be easy to use, thus promoting
its utility to everyday researchers. In Aim 1 (K99), we will create database of effect size maps for typical study
designs using large, publicly available datasets and build a web app for exploring these maps. We will use this
database in Aim 2 (R00) to design a post hoc power calculator algorithm to estimate power for typical study
designs. Aim 3 (R00) will refine this algorithm by creating a meta-regression model that incorporates additional
study and participant factors to provide a more tailored estimate of power for an individual researcher. Finally, in
Aim 4 (R00) we will create and disseminate an easy-to use web-based tool for performing the “tailored” power
analysis, notably only requiring the user to specify information readily available to them. This proposal will result
in the first algorithm and tool to perform an empirical power analysis for fMRI study planning, with a potential
user base that includes all researchers planning an fMRI study using typical designs. This will enable researchers
to more easily and accurately plan well-powered studies, thus promoting more robust and reproducible findings
in the field. Furthermore, this proposal will provide training in production-ready web development, study
aggregation methods, and independence-oriented professional competencies, which will facilitate my transition
to an independent research career leading statistical methodology development in fMRI.
项目摘要
功能性磁共振成像(fMRI)研究已经改变了我们对人类大脑的理解
在前所未有的国际资金支持下,
来自大脑计划。然而,最近的工作暴露了统计力量的普遍缺乏(即,能力
在典型的功能磁共振成像研究中,检测到感兴趣的效应),导致无法复制或仅发现少量
真实效果的冰山一角。这在很大程度上是因为执行适当的功率分析,
fMRI研究设计并不简单。首先,很难根据文献估计预期效果,
研究样本量已经很小,即使是更小的试点数据也可能无法得出有用的估计。
此外,fMRI数据和推理算法是复杂的,然而现有的fMRI功率分析工具依赖于
相对有限的模拟,参数估计,并省略了最流行的推理程序。因此,在本发明中,
fMRI研究人员经常进行误导性的功效分析或完全避免功效分析,
有机会优化设计研究,以检测预期效果。为了弥补这一差距,我们将建立一个权力
为标准fMRI研究量身定制的分析算法和工具,利用:1)大型现有数据集来定义
典型的学习效果,以及2)最近开发的用于基准测试复杂推理能力的方法
程序.最后,它的设计将提供量身定制的建议,并易于使用,从而促进
它对日常研究人员的效用。在目标1(K99)中,我们将为典型研究创建效应量图数据库
设计使用大型,公开可用的数据集,并建立一个网络应用程序来探索这些地图。我们将使用这个
Aim 2(R00)中的数据库,以设计事后功效计算器算法来估计典型研究的功效
的设计.目标3(R00)将通过创建一个元回归模型来完善该算法,该模型包含额外的
研究和参与者的因素,以提供一个更有针对性的估计功率为个人研究人员。最后在
目标4(R00)我们将创建和传播一个易于使用的基于网络的工具,用于执行“量身定制”的权力
分析,特别是只要求用户指定他们随时可用的信息。这一提议将导致
在第一个算法和工具,执行实证功率分析的功能磁共振成像研究规划,具有潜在的
用户群,包括使用典型设计计划fMRI研究的所有研究人员。这将使研究人员
更容易和准确地计划良好的动力研究,从而促进更强大和可重复的发现
在外地此外,该提案将提供生产就绪的Web开发培训,
聚合方法和独立导向的专业能力,这将有助于我的过渡
到一个独立的研究生涯领先的统计方法的发展功能磁共振成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Noble其他文献
Stephanie Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Noble', 18)}}的其他基金
Constrained Network-Based Multiple Comparison Correction
基于约束网络的多重比较校正
- 批准号:
10212948 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant














{{item.name}}会员




