EXCITOTOXIC MECHANISMS IN POST TRAUMATIC NEURONAL DEATH
创伤后神经元死亡的兴奋性毒性机制
基本信息
- 批准号:3415531
- 负责人:
- 金额:$ 13.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-08-01 至 1993-07-31
- 项目状态:已结题
- 来源:
- 关键词:aminoacid axon brain injury cell death cerebral ischemia /hypoxia dialysis therapy disease /disorder model electrophysiology glutamate receptor hippocampus histochemistry /cytochemistry immunocytochemistry interneurons intracranial pressure iontophoresis therapy laboratory rat neural degeneration neurotoxins thalamic nuclei trauma
项目摘要
The long range objectives of this research are to identify cellular
mechanisms responsible for the death of selectively vulnerable neuronal
populations following head injury in order to identify treatments which may
prevent the development of debilitating neurological deficits. The role of
excitatory amino acid toxicity (excitotoxicity) in degenerative processes
which occur as a consequence of two components of concussive brain injury,
mechanical cortical injury and partial ischemia due to raised intracranial
pressure (ICP), will be examined separately and in combination using in
vivo animal (rat) models. We will examined the hypothesis that aspects of
head injury render selectively vulnerable populations of neurons
hyperexcitable and that overexcitation mediated by excitatory amino acid
receptors precipitates delayed neuronal degeneration. This study will
directly examine the role of excitotoxicity in the degeneration of 3
vulnerable neuronal populations distant to sites of direct cortical injury,
1) specific thalamic relay nuclei which undergo retrograde degeneration
following cortical injury, 2) hippocampal pyramidal neurons in the CA1
region of Ammon's horn which undergo delayed degeneration following
ischemia due to elevated ICP, and 3) the GABAergic thalamic interneurons of
the thalamic reticular nucleus (RT), which are even more sensitive to
ischemia due to elevated ICP than the CA1 neurons. The use of the
"isolated" ICP or mechanical injury models will allow a more controlled
examination of the pathological processes initiated by these two components
of concussive brain injury. Findings from these studies will facilitate
the identification of compounds which might prevent neurodegeneration in
the "combined" injury model which more closely resembles human concussive
brain injury. The first specific aim is to determine concussive brain
injury. This will be accomplished by characterizing the timecourse of
alterations in ICP and depolarization consequent upon cortical impact in a
model of concussive injury and comparing the patterns of neuronal loss
using classical histological and immunohistochemical techniques seen in
this model with those seen in models of cortical ablation or cisternal
infusion to elevate ICP. The second specific aim is to investigate the
role of excitotoxicity in the death of neurons in populations vulnerable to
increased ICP or cortical lesions. This will be accomplished by performing
intracranial microdialysis to establish whether the release of endogenous
excitatory amino acids (EAAs) brings about excitotoxic conditions, and
extracellular unit recording and microiontophoresis of EAA antagonists to
determine which class(es) of EAA receptors mediate overexcitation following
injury. The third aim is to determine whether prevention of excitotoxicity
protects vulnerable neurons from degeneration following either elevated
ICP, cortical lesions, or a combination of these insults such as occurs in
the cortical impact model of concussive brain injury. Compounds found to
prevent overexcitation of vulnerable neuronal populations will be
administered to animals prior to or after the different types of injury and
their efficacy in preventing neuronal loss will be examined using
histological and immunohistochemical techniques 1 week to 3 months later.
Because neuronal death in vulnerable populations is delayed from up to
several days, antiexcitotoxic drugs can be effectively administered after
the insult, offering a unique window for therapeutic intervention in
pathological processes which would otherwise lead to the development of
persisting neurological deficits. If memory deficits result from CA1
neuronal degeneration and attentional deficits occur as a consequence of RT
degeneration following head injury then agents identified as being
protective in our animal experiments would be potential candidates for
clinical trials of head injury treatment.
这项研究的长期目标是识别细胞
选择性易损神经元死亡的机制
头部损伤后的人群,以确定可能的治疗方法
防止虚弱的神经缺陷的发展。的作用
退变过程中的兴奋性氨基酸毒性(兴奋性毒性)
这是脑震荡损伤的两个组成部分的结果,
颅内隆起致机械性皮质损伤和部分脑缺血
压力(ICP值),将单独和结合使用
活体动物(大鼠)模型。我们将检验这一假设,即
头部损伤导致选择性易受伤害的神经元群体
兴奋性和兴奋性氨基酸介导的过度兴奋
受体加速延迟性神经元变性。这项研究将
直接检测兴奋性毒性在细胞退行性变中的作用
距离直接皮质损伤部位较远的脆弱神经元群体,
1)逆行变性的特定丘脑中继核团
皮质损伤后,2)海马CA1区锥体神经元
亚扪角区,延迟性退行性变
3)脑内GABA能丘脑间神经元的分布。
丘脑网状核(RT),它对
脑缺血所致的ICP值高于CA1区神经元。的用法
隔离的颅内压或机械性损伤模型将允许更可控的
对这两种成分引发的病理过程的检查
脑震荡造成的脑损伤。这些研究的结果将有助于
抗神经退行性变化合物的鉴定
更接近人类脑震荡的“复合”损伤模型
脑部受伤。第一个明确的目标是确定脑震荡的大脑
受伤。这将通过表征时间进程来实现
大脑皮质撞击导致的颅内压和去极化的改变
脑震荡损伤模型的建立及神经元丢失模式的比较
使用经典的组织学和免疫组织化学技术
此模型与皮质消融或脑池模型中看到的模型相同
输液以升高颅内压。第二个具体目标是调查
兴奋性毒性在易感人群神经元死亡中的作用
颅内压升高或皮质损害。这将通过执行以下操作来实现
确定颅内微透析是否释放内源性
兴奋性氨基酸(EaAs)引起兴奋性毒性条件,
EAA拮抗剂的细胞外单位记录和微离子导入
确定哪一类EAA受体在以下情况下介导过度兴奋
受伤。第三个目标是确定兴奋性毒性的预防
保护脆弱的神经元不受以下两种情况之一的影响
颅内压、皮质损害或这些侮辱的组合,如发生在
脑震荡脑损伤的皮质撞击模型。已发现的化合物
防止易受刺激的神经元种群过度兴奋
在不同类型的伤害之前或之后给动物注射
它们在防止神经元丢失方面的有效性将通过以下方法进行检验
术后1周~3个月行组织学和免疫组织化学检查。
因为脆弱人群中的神经元死亡从最高可推迟到
几天后,可以有效地使用抗兴奋性毒性药物
这一侮辱,为治疗干预提供了一个独特的窗口
病理过程,否则将导致发展
持续的神经缺陷。如果CA1导致记忆缺陷
RT导致神经元变性和注意障碍
头部损伤后的变性,然后被确认为
我们动物实验中的保护性将是潜在的候选者
颅脑损伤治疗的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS T ROSS其他文献
DOUGLAS T ROSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS T ROSS', 18)}}的其他基金
EXCITOTOXIC MECHANISMS IN POST TRAUMATIC NEURONAL DEATH
创伤后神经元死亡的兴奋性毒性机制
- 批准号:
3415535 - 财政年份:1990
- 资助金额:
$ 13.92万 - 项目类别:
EXCITOTOXIC MECHANISMS IN POST TRAUMATIC NEURONAL DEATH
创伤后神经元死亡的兴奋性毒性机制
- 批准号:
3415534 - 财政年份:1990
- 资助金额:
$ 13.92万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 13.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows